Technical Papers
Jul 22, 2024

Fly Ash–Based Aqueous Nanosilica Enhanced Activator for Efficient Production of Room Temperature–Cured Concrete with Two-Part Alkali-Activated Binders

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 10

Abstract

Room temperature–cured alkali-activated binders of enhanced strength are produced without external silica addition. The extraction of nanosilica and its use in producing alkali-activated binders made of fly ash and slag are explored. Low-energy extraction of an aqueous nanosilica activating solution is developed in a zero-waste utilization process. Alkali-activated slag–fly ash (AASF) binders are activated with alkaline fly ash–based aqueous nanosilica (FABANS) solutions. FABANS is highly amorphous nanosilica extracted from fly ash through dissolution in an alkaline solution that also activates the slag. The reaction kinetics, compressive strength, and reaction products are evaluated in an AASF made with alkaline FABANS. There is a significant strength improvement from the enhanced formation of calcium aluminosilicate hydrate (C─ A─ S─ H) gel and densification of the microstructure in AASF made with FABANS. The Na in the activated AASF binder is recovered by water leaching. The setting and strength gain in the AASF are due to slag hydration. Using FABANS efficiently mobilizes the reactive silica from fly ash to enhance reaction product formation in AASF. FABANS is suitable for enhancing the strength of concrete produced with AASF binders achieved at room temperature.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The lead author would like to acknowledge support from the Prime Minister Research Fellowship (PMRF) during the study.

References

Abdel-Gawwad, H. A., M. S. Mohammed, and S. E. Zakey. 2020. “Preparation, performance, and stability of alkali-activated-concrete waste-lead- bearing sludge composites.” J. Cleaner Prod. 259 (Jun): 120924. https://doi.org/10.1016/j.jclepro.2020.120924.
Andreola, V. M., M. Y. R. da Gloria, D. J. dos Santos, and R. D. T. Filho. 2019. “Partial replacement of cement by combination of fly ash and metakaolin in bamboo bioconcretes.” Acad. J. Civ. Eng. 37 (2): 102–106. https://doi.org/10.26168/ICBBM2019.14.
Ben Haha, M., G. le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Bernal, S. A., E. D. Rodríguez, R. Mejia De Gutiérrez, J. L. Provis, and S. Delvasto. 2011. “Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash.” Waste Biomass Valorization 3 (1): 99–108. https://doi.org/10.1007/s12649-011-9093-3.
Bhagath Singh, G. V. P., C. Subrahmanyam, and K. V. L. Subramaniam. 2018. “Dissolution of the glassy phase in low-calcium fly ash during alkaline activation.” Adv. Cem. Res. 30 (7): 313–322. https://doi.org/10.1680/jadcr.17.00170.
Bhagath Singh, G. V. P., and K. Subramaniam. 2020. “Efficient production of alkali-activated geopolymers using low-calcium fly ash.” Indian Concr. J. 94 (7): 1–7.
Bhagath Singh, G. V. P., and K. V. L. Subramaniam. 2016a. “Direct decomposition X-ray diffraction method for amorphous phase quantification and glassy phase determination in binary blends of siliceous fly ash and hydrated cement.” J. Sustain. Cem. Based Mater. 6 (2): 111–125. https://doi.org/10.1080/21650373.2016.1177478.
Bhagath Singh, G. V. P., and K. V. L. Subramaniam. 2016b. “Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash.” Constr. Build. Mater. 124 (Oct): 139–147. https://doi.org/10.1016/j.conbuildmat.2016.07.081.
Bhagath Singh, G. V. P., and K. V. L. Subramaniam. 2017. “Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash.” Cem. Concr. Compos. 81 (Aug): 122–132. https://doi.org/10.1016/j.cemconcomp.2017.05.001.
Bhagath Singh, G. V. P., and K. V. L. Subramaniam. 2019. “Effect of active components on strength development in alkali-activated low calcium fly ash cements.” J. Sustain. Cem. Based Mater. 8 (1): 1–19. https://doi.org/10.1080/21650373.2018.1520657.
BIS (Bureau of Indian Standards). 1959. Method of tests for strength of concrete. IS 516. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1987. Specification for granulated slag for the manufacture of Portland slag cement. IS 12089. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1988. Methods of physical tests for hydraulic cement, Part 6: Determination of compressive strength of hydraulic cement (other than masonry cement). IS 4031-6. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1996. Specification for vicat apparatus. IS 5513. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 2003. Specification for pulverized fuel ash, part 1: For use as pozzolana in cement, cement mortar and concrete. IS 3812-1. New Delhi, India: BIS.
Brough, A. R., and A. Atkinson. 2002. “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cem. Concr. Res. 32 (6): 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2.
Cook, R. A., and K. C. Hover. 1999. “Mercury porosimetry of hardened cement pastes.” Cem. Concr. Res. 29 (6): 933–943. https://doi.org/10.1016/S0008-8846(99)00083-6.
Cristelo, N., J. Coelho, T. Miranda, Á. Palomo, and A. Fernández-Jiménez. 2019. “Alkali activated composites: An innovative concept using iron and steel slag as both precursor and aggregate.” Cem. Concr. Compos. 103 (Oct): 11–21. https://doi.org/10.1016/j.cemconcomp.2019.04.024.
Das, S. K., J. Mishra, S. M. Mustakim, A. Adesina, C. R. Kaze, and D. Das. 2021. “Sustainable utilization of ultrafine rice husk ash in alkali activated concrete: Characterization and performance evaluation.” J. Sustain. Cem. Based Mater. 11 (2): 142–160. https://doi.org/10.1080/21650373.2021.1894265.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2006. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Fang, G., and M. Zhang. 2020. “Multiscale micromechanical analysis of alkali-activated fly ash-slag paste.” Cem. Concr. Res. 135 (Sep): 106141. https://doi.org/10.1016/j.cemconres.2020.106141.
Fiameni, L., A. Fahimi, C. Marchesi, G. P. Sorrentino, A. Zanoletti, K. Moreira, B. Valentim, G. Predeanu, L. E. Depero, and E. Bontempi. 2021. “Phosphorous and silica recovery from rice husk poultry litter ash: A sustainability analysis using a zero-waste approach.” Materials 14 (21): 6297. https://doi.org/10.3390/ma14216297.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015. “Characterization of alkali activated slag–fly ash blends containing nano-silica.” Constr. Build. Mater. 98 (Nov): 397–406. https://doi.org/10.1016/j.conbuildmat.2015.08.086.
Gao, X., Q. L. Yu, A. Lazaro, and H. J. H. Brouwers. 2017. “Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint.” Cem. Concr. Res. 100 (Oct): 129–139. https://doi.org/10.1016/j.cemconres.2017.06.007.
Garbev, K., G. Beuchle, M. Bornefeld, L. Black, and P. Stemmermann. 2008. “Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 1: Synchrotron-based X-ray diffraction.” J. Am. Ceramic Soc. 91 (9): 3005–3014. https://doi.org/10.1111/j.1551-2916.2008.02484.x.
García Lodeiro, I., D. E. Macphee, A. Palomo, and A. Fernández-Jiménez. 2009. “Effect of alkalis on fresh C–S–H gels. FTIR analysis.” Cem. Concr. Res. 39 (3): 147–153. https://doi.org/10.1016/j.cemconres.2009.01.003.
Gebregziabiher, B. S., R. Thomas, and S. Peethamparan. 2015. “Very early-age reaction kinetics and microstructural development in alkali-activated slag.” Cem. Concr. Compos. 55 (Jan): 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001.
Gomonsirisuk, K., and P. Thavorniti. 2019. “Use of water glass from rice husk and bagasse ashes in the preparation of fly ash based geopolymer.” Key Eng. Mater. 798 (May): 364–369. https://doi.org/10.4028/www.scientific.net/KEM.798.364.
Hajimohammadi, A., J. L. Provis, and J. S. J. van Deventer. 2011. “Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.” J. Colloid Interface Sci. 357 (2): 384–392. https://doi.org/10.1016/j.jcis.2011.02.045.
Heath, A., K. Paine, and M. McManus. 2014. “Minimising the global warming potential of clay based geopolymers.” J. Cleaner Prod. 78 (Sep): 75–83. https://doi.org/10.1016/j.jclepro.2014.04.046.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Joglekar, S. N., and R. A. Kharkar. 2019. “Process development of silica extraction from RHA: A cradle to gate environmental impact approach.” Environ. Sci. Pollution Res. 26 (1): 492–500. https://doi.org/10.1007/s11356-018-3648-9.
Kamakshi, T. A., K. C. Reddy, and K. V. L. Subramaniam. 2022. “Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica.” Mater. Struct. 55 (2): 1–15. https://doi.org/10.1617/s11527-022-01908-w.
Kastiukas, G., S. Ruan, S. Liang, and X. Zhou. 2020. “Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment.” J. Cleaner Prod. 255 (May): 120290. https://doi.org/10.1016/j.jclepro.2020.120290.
Keke, S., P. Xiaoqin, W. Shuping, and Z. Lu. 2019. “Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate.” J. Cleaner Prod. 232 (Sep): 508–517. https://doi.org/10.1016/j.jclepro.2019.05.254.
Komljenović, M., Z. Baščarević, N. Marjanović, and V. Nikolić. 2013. “External sulfate attack on alkali-activated slag.” Constr. Build. Mater. 49 (Dec): 31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013.
Kotwal, A. R., Y. J. Kim, J. Hu, and V. Sriraman. 2015. “Characterization and early age physical properties of ambient cured geopolymer mortar based on class C fly ash.” Int. J. Concr. Struct. Mater. 9 (1): 35–43. https://doi.org/10.1007/s40069-014-0085-0.
Kumar, S., R. Kumar, A. Bandopadhyay, T. C. Alex, B. Ravi Kumar, S. K. Das, and S. P. Mehrotra. 2008. “Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement.” Cem. Concr. Compos. 30 (8): 679–685. https://doi.org/10.1016/j.cemconcomp.2008.05.005.
Liu, C. L., S. L. Zheng, S. H. Ma, Y. Luo, J. Ding, X. H. Wang, and Y. Zhang. 2018. “A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash.” Fuel Process. Technol. 173 (May): 40–47. https://doi.org/10.1016/j.fuproc.2018.01.007.
Mehta, A., R. Siddique, T. Ozbakkaloglu, F. Uddin Ahmed Shaikh, and R. Belarbi. 2020. “Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties.” Constr. Build. Mater. 257 (Oct): 119548. https://doi.org/10.1016/j.conbuildmat.2020.119548.
Mehta, P. K., and P. J. M. Monteiro. 2014. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill Education.
Mirmohamadsadeghi, S., and K. Karimi. 2020. “Recovery of silica from rice straw and husk.” In Current developments in biotechnology and bioengineering: Resource recovery from wastes, 411–433. Amsterdam, Netherlands: Elsevier.
Moraes, J. C. B., A. Font, L. Soriano, J. L. Akasaki, M. M. Tashima, J. Monzó, M. V. Borrachero, and J. Payá. 2018. “New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator.” Constr. Build. Mater. 171 (May): 611–621. https://doi.org/10.1016/j.conbuildmat.2018.03.230.
Puertas, F., and A. Fernández-Jiménez. 2003. “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes.” Cem. Concr. Compos. 25 (3): 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2000. “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Puligilla, S., and P. Mondal. 2015. “Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction.” Cem. Concr. Res. 70 (Apr): 39–49. https://doi.org/10.1016/j.cemconres.2015.01.006.
Reddy, K. C., and K. V. Subramaniam. 2023. “Production and evaluation of alkali-activated binders of low-calcium fly ash with slag replacement.” Adv. Cem. Res. 35 (8): 358–372. https://doi.org/10.1680/jadcr.22.00034.
Reddy, K. C., and K. V. L. Subramaniam. 2020a. “Blast furnace slag hydration in an alkaline medium: Influence of sodium content and sodium hydroxide molarity.” J. Mater. Civ. Eng. 32 (12): 04020371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003455.
Reddy, K. C., and K. V. L. Subramaniam. 2020b. “Quantitative phase analysis of slag hydrating in an alkaline environment.” J. Appl. Crystallogr. 53 (2): 424–434. https://doi.org/10.1107/S1600576720001399.
Reddy, K. C., and K. V. L. Subramaniam. 2021. “Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends.” Cem. Concr. Compos. 123 (Oct): 104175. https://doi.org/10.1016/j.cemconcomp.2021.104175.
Renaudin, G., J. Russias, F. Leroux, C. Cau-dit-Coumes, and F. Frizon. 2009. “Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses.” J. Solid State Chem. 182 (12): 3320–3329. https://doi.org/10.1016/j.jssc.2009.09.024.
Sankar, K., P. Stynoski, G. K. Al-Chaar, and W. M. Kriven. 2018. “Sodium silicate activated slag-fly ash binders: Part I—Processing, microstructure, and mechanical properties.” J. Am. Ceramic Soc. 101 (6): 2228–2244. https://doi.org/10.1111/jace.15391.
Shen, P., Y. Zhang, Y. Jiang, B. Zhan, J. Lu, S. Zhang, D. Xuan, and C. S. Poon. 2022. “Phase assemblance evolution during wet carbonation of recycled concrete fines.” Cem. Concr. Res. 154 (Apr): 106733. https://doi.org/10.1016/j.cemconres.2022.106733.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Jun): 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Sun, B., G. Ye, and G. de Schutter. 2022. “A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials.” Constr. Build. Mater. 326 (Apr): 126843. https://doi.org/10.1016/j.conbuildmat.2022.126843.
Tchakouté, H. K., C. H. Rüscher, S. Kong, E. Kamseu, and C. Leonelli. 2016. “Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study.” Constr. Build. Mater. 114 (Jul): 276–289. https://doi.org/10.1016/j.conbuildmat.2016.03.184.
Temuujin, J., A. van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Vinai, R., and M. Soutsos. 2019. “Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders.” Cem. Concr. Res. 116 (Feb): 45–56. https://doi.org/10.1016/j.cemconres.2018.11.008.
Wang, D., Q. Wang, S. Zhuang, and J. Yang. 2018. “Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: Reaction mechanism, engineering properties and leaching behaviors.” Constr. Build. Mater. 188 (Nov): 860–873. https://doi.org/10.1016/j.conbuildmat.2018.08.182.
Wang, S. D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Washburn, E. W. 1921. “The dynamics of capillary flow.” Phys. Rev. 17 (3): 273. https://doi.org/10.1103/PhysRev.17.273.
Ye, H., and A. Radlińska. 2016. “Shrinkage mechanisms of alkali-activated slag.” Cem. Concr. Res. 88 (Oct): 126–135. https://doi.org/10.1016/j.cemconres.2016.07.001.
Zhang, S., Z. Li, B. Ghiassi, S. Yin, and G. Ye. 2021. “Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes.” Cem. Concr. Res. 144 (Jun): 106447. https://doi.org/10.1016/j.cemconres.2021.106447.
Zhang, Z., H. Wang, J. L. Provis, F. Bullen, A. Reid, and Y. Zhu. 2012. “Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide.” Thermochim. Acta 539 (Jul): 23–33. https://doi.org/10.1016/j.tca.2012.03.021.
Živica, V. 2007. “Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures.” Constr. Build. Mater. 21 (7): 1463–1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 10October 2024

History

Received: Aug 29, 2023
Accepted: Mar 1, 2024
Published online: Jul 22, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 22, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Assistant, Dept. of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India. ORCID: https://orcid.org/0009-0005-2325-9167
Kruthi K. Ramagiri
Postdoctoral Fellow, Dept. of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India.
Professor, Dept. of Civil Engineering, Indian Institute of Technology Hyderabad, Rm. 502, Kandi, Sangareddy, Hyderabad, Telangana 502285, India (corresponding author). ORCID: https://orcid.org/0000-0002-5995-0911. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share