Case Studies
Apr 27, 2024

Investigation on the Microstructure and Mechanical Property of Long Distance Water Pipeline Joint

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 7

Abstract

Welding residual stress will increase the risk of stress corrosion cracking of welded joints in service. It is crucial to study the distribution of welding residual stress in welded joints. In order to study the mechanical property and microstructure of the joint, a two-dimensional model is established based on the actual morphology. The results show that the maximum residual stress occurs in the welded metal. The Mises stress is 355 MPa, and the circumferential stress is 362 MPa. After welding, the outer surface maximum circumferential residual stress is 388 MPa, and the maximum axial residual stress is 357 MPa, which is in good agreement with the simulation results. The microhardness distribution appears as base metal > heat-affected zone > welded metal. The distribution of maximum shear strength is similar to the microhardness. The main phase composition consists of proeutectoid ferrite, acicular ferrite, massive ferrite, and a small amount of granular carbide precipitates.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research is funded by the School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou China. This work is supported by the Gansu Provincial Young Doctors Fund (No. 2023QB-046) and the NSF of Gansu Province (Nos. 20JR5RA416 and 21JR7RA308). This support is gratefully acknowledged. Furthermore, all authors of the following references are much appreciated.

References

Álvarez, G., A. Zafra, C. Rodríguez, F. J. Belzunce, and I. I. Cuesta. 2020. “SPT analysis of hydrogen embrittlement in CrMoV welds.” Theor. Appl. Fract. Mech. 110 (Dec): 102813. https://doi.org/10.1016/j.tafmec.2020.102813.
Amanambu, A. C., O. A. Obarein, J. Mossa, L. Li, S. S. Ayeni, O. Balogun, A. Oyebamiji, and F. U. Ochege. 2020. “Groundwater system and climate change: Present status and future considerations.” J. Hydrol. 589 (Oct): 125163. https://doi.org/10.1016/j.jhydrol.2020.125163.
Babaeeian, M., and M. Mohammadimehr. 2020. “Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method.” Opt. Lasers Eng. 128 (May): 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.
Barsoum, Z., and I. Barsoum. 2009. “Residual stress effects on fatigue life of welded structures using LEFM.” Eng. Fail. Anal. 16 (1): 449–467. https://doi.org/10.1016/j.engfailanal.2008.06.017.
Bartolozzi, R., and F. Frendo. 2011. “Stiffness and strength aspects in the design of automotive coil springs for McPherson front suspensions: A case study.” Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 225 (10): 1377–1391. https://doi.org/10.1177/0954407011403853.
Baxevani, E. A., and A. E. Giannakopoulos. 2009. “The modified Rockwell test: A new probe for mechanical properties of metals.” Exp Mech. 49 (Jun): 371–382. https://doi.org/10.1007/s11340-008-9184-7.
Chang, K. H., and C. H. Lee. 2007. “Residual stresses and fracture mechanics analysis of a crack in welds of high strength steels.” Eng. Fract. Mech. 74 (6): 980–994. https://doi.org/10.1016/j.engfracmech.2006.08.012.
Chlup, Z., L. Novotná, F. Šiška, D. Drdlík, and H. Hadraba. 2020. “Effect of residual stresses to the crack path in alumina/zirconia laminates.” J. Eur. Ceram. Soc. 40 (15): 5810–5818. https://doi.org/10.1016/j.jeurceramsoc.2020.06.044.
Dong, P. S. 2019. “On the mechanics of residual stresses in girth welds.” J. Press. Vessel Technol. 169 (Jan): 142–152. https://doi.org/10.1016/j.ijpvp.2018.12.004.
Dong, P. S., and J. K. Hong. 2007. “On the residual stress profiles in new API 579/ASME FFS-1 appendix E.” Weld. World 51 (5–6): 119–127. https://doi.org/10.1007/BF03266579.
Esfandyarpour, M. J., R. Alizadeh, and R. Mahmudi. 2019. “Applicability of shear punch testing to the evaluation of hot tensile deformation parameters and constitutive analyses.” J. Mater. Res. Technol. 8 (1): 996–1002. https://doi.org/10.1016/j.jmrt.2018.02.014.
Feulvarch, E., R. Lacroix, and H. Deschanels. 2020. “A 3D locking-free XFEM formulation for the von Mises elasto-plastic analysis of cracks.” Comput. Methods Appl. Mech. Eng. 361 (Apr): 112805. https://doi.org/10.1016/j.cma.2019.112805.
Fonseca, E. M. M., and F. J. M. Q. de Melo. 2010. “Numerical solution of curved pipes submitted to in-plane loading conditions.” Thin Walled Struct. 48 (2): 103–109. https://doi.org/10.1016/j.tws.2009.09.004.
Fonseca, E. M. M., F. J. M. Q. de Melo, and C. A. M. Oliveira. 2002. “Determination of flexibility factors in curved pipes with end restraints using a semi-analytic formulation.” Int. J. Press. Vessels Pip. 79 (12): 829–840. https://doi.org/10.1016/S0308-0161(02)00102-3.
Fonseca, E. M. M., F. J. M. Q. de Melo, and C. A. M. Oliveira. 2005. “The thermal and mechanical behaviour of structural steel piping systems.” Int. J. Press. Vessels Pip. 82 (2): 145–153. https://doi.org/10.1016/j.ijpvp.2004.06.012.
Goldak, J., A. Chakravarti, and M. Bibby. 1984. “A new finite element model for welding heat sources.” Metall. Mater. Trans. B. 15 (Jun): 299–305. https://doi.org/10.1007/BF02667333.
Hornbuckle, B. C., H. A. Murdoch, A. J. Roberts, L. J. Kecskes, M. A. Tschopp, K. J. Doherty, J. H. Yu, and K. A. Darling. 2017. “Property mapping of friction stir welded Al-2139 T8 plate using site specific shear punch testing.” Mater. Sci. Eng., A 682 (Jan): 192–201. https://doi.org/10.1016/j.msea.2016.11.032.
Horvath, M., M. Stoschka, and S. Fladischer. 2022. “Fatigue strength study based on geometric shape of bulk defects in cast steel.” Int. J. Fatigue 163 (Oct): 107082. https://doi.org/10.1016/j.ijfatigue.2022.107082.
Hutchings, M. T., P. J. Withers, T. M. Holden, and T. Lorentzen. 2005. Introduction to characterization of residual stress by neutron diffraction. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9780203402818.
Lambert, P. A., A. F. Gourgues, and A. Pineau. 2004. “Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel.” Acta Mater. 52 (8): 2337–2348. https://doi.org/10.1016/j.actamat.2004.01.025.
Lancaster, R. J., S. P. Jeffs, B. J. Haigh, and N. C. Barnard. 2022. “Derivation of material properties using small punch and shear punch test methods.” Mater. Des. 215 (Mar): 110473. https://doi.org/10.1016/j.matdes.2022.110473.
Le, T., A. Paradowska, M. A. Bradford, X. P. Liu, and H. R. Valipour. 2020. “Residual stresses in welded high-strength steel I-Beams.” J. Constr. Steel Res. 167 (Apr): 105849. https://doi.org/10.1016/j.jcsr.2019.105849.
Liao, F. F., M. Q. Wang, L. S. Tu, J. Wang, and L. F. Lu. 2019. “Micromechanical fracture model parameter influencing factor study of structural steels and welding materials.” Constr. Build. Mater. 215 (Aug): 898–917. https://doi.org/10.1016/j.conbuildmat.2019.04.155.
Lillemäe, L., H. L. Lammi, and H. R. Molter. 2012. “Fatigue strength of welded butt joints in thin and slender specimens.” Int. J. Fatigue 44 (Nov): 98–106. https://doi.org/10.1016/j.ijfatigue.2012.05.009.
Liu, C., B. Wu, and J. X. Zhang. 2010. “Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding.” Metall. Mater. Trans. B 41 (Oct): 1129–1138. https://doi.org/10.1007/s11663-010-9408-y.
Liu, X. L., Z. W. Guo, D. J. Bai, and C. Q. Yuan. 2022. “Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships.” Ocean Eng. 258 (Aug): 111815. https://doi.org/10.1016/j.oceaneng.2022.111815.
Madenci, E., and S. Oterkus. 2016. “Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening.” J. Mech. Phys. Solids 86 (Jan): 192–219. https://doi.org/10.1016/j.jmps.2015.09.016.
Mathew, R. T., S. Singam, P. Ghosh, S. K. Masa, and M. Prasad. 2022. “The defining role of initial microstructure and processing temperature on microstructural evolution, hardness and tensile response of Al-Mg-Sc-Zr (AA5024) alloy processed by high pressure torsion.” J. Alloys Compd. 901 (Apr): 163548. https://doi.org/10.1016/j.jallcom.2021.163548.
Muránsky, O., F. Hosseinzadeh, C. J. Hamelin, Y. Traore, and P. J. Bendeich. 2018. “Investigating optimal cutting configurations for the contour method of weld residual stress measurement.” Int. J. Press. Vessels Pip. 164 (Jul): 55–67. https://doi.org/10.1016/j.ijpvp.2017.04.006.
Phani, P. S., W. C. Oliver, and G. M. Pharr. 2020. “Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement.” Mater. Des. 194 (Sep): 108923. https://doi.org/10.1016/j.matdes.2020.108923.
Real, P. V., R. Cazeli, L. S. Silva, A. Santiago, and P. Piloto. 2004. “The effect of residual stresses in the lateral-torsional buckling of steel I-beams at elevated temperature.” J. Constr. Steel Res. 60 (3–5): 783–793. https://doi.org/10.1016/S0143-974X(03)00143-3.
Schoderböck, P., and H. Köstenbauer. 2021. “Residual stress determination in thin films by X-ray diffraction and the widespread analytical practice applying a biaxial stress model: An outdated oversimplification.” Appl. Surf. Sci. 541 (Mar): 148531. https://doi.org/10.1016/j.apsusc.2020.148531.
Sepe, R., J. Wiebesiek, and C. M. Sonsino. 2022. “Numerical and experimental validation of residual stresses of laser-welded joints and their influence on the fatigue behavior.” Fatigue Fract. Eng. Mater. Struct. 162 (Sep): 106901. https://doi.org/10.1016/j.ijfatigue.2022.106901.
Silva, C. C., and J. P. Farias. 2008. “Non-uniformity of residual stress profiles in butt-welded pipes in manual arc welding.” J. Mater. Process. Technol. 199 (1–3): 452–455. https://doi.org/10.1016/j.jmatprotec.2007.08.026.
Soyama, H., C. R. Chighizola, and M. R. Hill. 1998. “Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel.” J. Mater. Process. Technol. 73 (1–3): 64–73. https://doi.org/10.1016/S0924-0136(97)00213-6.
Tan, L., L. Y. Zhao, P. C. Zhao, L. L. Wang, J. J. Pan, and X. X. Zhao. 2020. “Effect of welding residual stress on operating stress of nuclear turbine low pressure rotor.” Nucl. Eng. Technol. 52 (8): 1862–1870. https://doi.org/10.1016/j.net.2020.01.026.
Taraphdar, P. K., M. M. Mahapatra, A. K. Pradhan, P. K. Singh, K. Sharma, and S. Kumar. 2021. “Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds.” Int. J. Press. Vessels Pip. 192 (Aug): 104392. https://doi.org/10.1016/j.ijpvp.2021.104392.
Tian, Y., Z. L. Tan, J. Z. Zhang, Z. Y. Yuan, X. X. Zhang, Z. Q. Zhang, and M. Zhang. 2023. “Microstructure stability in wheel steel: A case of thermal-accumulated damage capacity in pearlite and low-carbon bainite.” Eng. Fail. Anal. 154 (Dec): 107656. https://doi.org/10.1016/j.engfailanal.2023.107656.
Traidia, A., F. Roger, E. Guyot, J. Schroeder, and G. Lubineau. 2012. “Hybrid 2D–3D modelling of GTA welding with filler wire addition.” Int. J. Heat Mass Transfer 55 (15–16): 3946–3963. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.025.
Umapathi, A., and S. Swaroop. 2019. “Measurement of residual stresses in titanium alloys using synchrotron radiation.” Measurement 140 (Jul): 518–525. https://doi.org/10.1016/j.measurement.2019.04.021.
Wang, K., Z. L. Ning, M. W. Li, J. F. Sun, and Y. J. Huang. 2021. “Shear punching of a Co20Cr20Fe20Ni20Mn15Cu5 high entropy alloy.” J. Alloys Compd. 887 (Dec): 161415. https://doi.org/10.1016/j.jallcom.2021.161415.
Wang, X. L., X. M. Wang, C. J. Shang, and R. D. K. Misra. 2016. “Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness.” Mater. Sci. Eng., A 649 (Jan): 282–292. https://doi.org/10.1016/j.msea.2015.09.030.
Xiao, Q., P. C. Huan, X. N. Wang, Z. G. Liu, X. J. Shen, Y. Gao, and H. S. Di. 2022. “Effect of root welding heat input on microstructure evolution and fracture mechanism in intercritically reheat-coarse grained heat-affected zone of X80 pipeline steel.” Mater. Today Commun. 31 (Jun): 103352. https://doi.org/10.1016/j.mtcomm.2022.103352.
Xin, H., J. A. Correia, M. Veljkovic, F. Berto, and L. Manuel. 2021. “Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels.” Int. J. Fatigue 147 (Jun): 106175. https://doi.org/10.1016/j.ijfatigue.2021.106175.
Xin, W. 2020. “On residual stress analysis and microstructural evolution for stainless steel type 304 spent nuclear fuel canisters weld joint: Numerical and experimental studies.” J. Nucl. Mater. 534 (Jun): 152131. https://doi.org/10.1016/j.jnucmat.2020.152131.
Xu, G. Q., Y. Luo, B. Yao, and W. C. Jiang. 2021. “Stresses measurement and failure prevention of on-line natural gas transmission pipelines for compressor station on collapsible loess area in northwest China.” Eng. Fail. Anal. 126 (Aug): 105467. https://doi.org/10.1016/j.engfailanal.2021.105467.
Xu, J., X. L. Jia, Y. Fan, A. Liu, and C. H. Zhang. 2014. “Residual stress analyses in a pipe welding simulation: 3D pipe versus axi-symmetric models.” Procedia Mater. Sci. 3 (Jan): 511–516. https://doi.org/10.1016/j.mspro.2014.06.085.
Zhang, C. T., R. H. Wang, and L. Zhu. 2021. “Mechanical properties of Q345 structural steel after artificial cooling from elevated temperatures.” J. Constr. Steel Res. 176 (Jan): 106432. https://doi.org/10.1016/j.jcsr.2020.106432.
Zhang, W. Q., Y. C. Li, H. T. Dong, C. W. Yang, X. L. Jiang, D. Y. Lou, H. Xue, K. W. Fang, and X. L. Wang. 2023. “Correlation between machining-induced surface alterations and stress corrosion cracking susceptibility of au stenitic stainless steels.” J. Mater. Res. Technol. 26 (Sep): 5076–5094. https://doi.org/10.1016/j.jmrt.2023.08.239.
Zhao, W. M., W. Jiang, H. J. Zhang, B. Han, H. C. Jin, and Q. Gao. 2021. “3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline.” J. Manuf. Processes 66 (Jun): 166–178. https://doi.org/10.1016/j.jmapro.2021.04.009.
Zhao, X. L., K. M. Ren, and X. H. Lu. 2022. “Investigation on microstructure and mechanical properties of Ni-based alloy overlayer by ultrasonic impact treatment.” J. Mech. Sci. Technol. 36 (8): 3973–3981. https://doi.org/10.1007/s12206-022-0719-0.
Zhao, X. L., and K. Wang. 2019. “Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint.” Int. J. Mater. Res. 110 (5): 466–475. https://doi.org/10.3139/146.111757.
Zheng, G., S. Hossain, E. Kingston, C. E. Truman, and D. J. Smith. 2017. “An optimisation study of the modified deep-hole drilling technique using finite element analyses applied to a stainless steel ring welded circular disc.” Int. J. Solids Struct. 118 (Jul): 146–166. https://doi.org/10.1016/j.ijsolstr.2017.04.008.
Zhu, L. X., J. H. Luo, G. Wu, J. Han, Y. N. Chen, and C. L. Song. 2021. “Study on strain response of X80 pipeline steel during weld dent deformation.” Eng. Fail. Anal. 123 (May): 105303. https://doi.org/10.1016/j.engfailanal.2021.105303.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 7July 2024

History

Received: Jun 4, 2023
Accepted: Jan 3, 2024
Published online: Apr 27, 2024
Published in print: Jul 1, 2024
Discussion open until: Sep 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, School of Materials Science and Engineering, Lanzhou Jiaotong Univ., 88 Anning West Rd., Anning District, Lanzhou 730070, China (corresponding author). ORCID: https://orcid.org/0000-0003-4557-2523. Email: [email protected]
Yuekai Jiang [email protected]
Master’s Candidate, School of Materials Science and Engineering, Lanzhou Jiaotong Univ., 88 Anning West Rd., Anning District, Lanzhou 730070, China. Email: [email protected]
Master’s Candidate, School of Materials Science and Engineering, Lanzhou Jiaotong Univ., 88 Anning West Rd., Anning District, Lanzhou 730070, China. Email: [email protected]
Kangming Ren [email protected]
Master’s Candidate, School of Materials Science and Engineering, Lanzhou Jiaotong Univ., 88 Anning West Rd., Anning District, Lanzhou 730070, China. Email: [email protected]
Master’s Candidate, School of Materials Science and Engineering, Lanzhou Jiaotong Univ., 88 Anning West Rd., Anning District, Lanzhou 730070, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share