Technical Papers
Sep 4, 2023

Microstructures and Mechanical Properties of Dimethyl Sulfoxide Pretreated Graphene Modified Asphalt

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 11

Abstract

The rutting and cracking distresses of asphalt pavement severely affect its service life. Enhancing the visco-toughness and mechanical properties of asphalt by using graphene may improve the durability of asphalt pavement. To enhance the visco-toughness and mechanical properties of asphalt, dimethyl sulfoxide pretreated graphene (DG) was utilized to modify asphalt, and its effects on the microstructure and mechanical properties of asphalt were investigated using X-ray diffraction, Charpy impact, bending fracture, and other tests, thus revealing DG’s enhancement mechanism Results indicate that the layer spacing of DG is increased, indicating that intercalation structures between asphalt and DG are formed. When the crack tip meets the intercalated DG, the partial fracture energy is absorbed, enhancing the asphalt’s tenacity and hindering crack propagation. The energy absorption capacity and impact visco-toughness are also enhanced. Finally, the DG intercalation structure disperses the primary crack propagation by producing many microcracks, so that the brittle fracture is reduced at low temperatures. DG shows much promise as an application for improving the mechanical properties of asphalt.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 51978340), the Postgraduate Research & Practice Innovation Program of Jiangsu Province in China (No. KYCX21_0885), and A Project Funded by the National First-class Disciplines in China (No. PNFD).

References

Afrah, H. H., H. A. S. Ghazwan, and A. S. Nadia. 2020. “Electrochemical synthesis and characterization of aromatic decorated graphene nanosheet and reduced graphene nanosheet.” Mater. Today 57 (Jun): 505–514. https://doi.org/10.1016/j.matpr.2022.01.
Antunes, F. P. N., V. S. Vaiss, S. R. Tavares, R. B. Capaz, and A. A. Leitao. 2018. “Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study.” Comput. Mater. Sci. 152 (Sep): 146–150. https://doi.org/10.1016/j.commatsci.2018.05.045.
ASTM. 2010. Standard test method for determining the Charpy impact resistance of notched specimens of plastics. West Conshohocken, PA: ASTM.
Candido, V. S., A. C. R. da Silva, N. T. Simonassi, F. S. da Luz, and S. N. Monteiro. 2017. “Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests.” J. Mater. Res. Technol. 6 (4): 334–338. https://doi.org/10.1016/j.jmrt.2017.06.001.
Chaibi, N., L. Hemmouche, D. Trache, H. Benkhlil, and H. Hedimi. 2021. “Study of the influence of nanoparticles on the behavior of composite materials.” J. Indian Chem. Soc. 98 (10): 100151. https://doi.org/10.1016/j.jics.2021.100151.
Chuah, S., Z. Pan, J. G. Sanjayan, C. M. Wang, and W. H. Duan. 2014. “Nano reinforced cement and concrete composites and new perspective from graphene oxide.” Constr. Build. Mater. 73 (Dec): 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040.
Doddamani, S., J. O. Kiran, M. Kaleemulla, and B. Bakkappa. 2019. “Fracture toughness testing of 6061Al–graphite composites using SENB specimens.” J. Inst. Eng.: Ser. D 100 (2): 195–201. https://doi.org/10.1007/s40033-019-00188-z.
Fang, Y. F., B. A. Ma, K. Wei, X. Q. Wang, X. X. Kang, and F. S. Liu. 2021. “Performance of single-component epoxy resin for crack repair of asphalt pavement.” Constr. Build. Mater. 304 (Oct): 124625. https://doi.org/10.1016/j.conbuildmat.2021.124625.
Fei, X. M., W. Wei, Y. Y. Tang, Y. Zhu, J. Luo, M. Q. Chen, and X. Y. Liu. 2017. “Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester.” Eur. Polym. J. 90 (May): 431–441. https://doi.org/10.1016/j.eurpolymj.2017.03.022.
Guo, T. T., C. H. Wang, H. J. Chen, Z. X. Li, Q. Chen, A. H. Han, D. W. Jiang, and Z. W. Wang. 2019. “Rheological properties of graphene/tourmaline composite modified asphalt.” Pet. Sci. Technol. 37 (21): 2190–2198. https://doi.org/10.1080/10916466.2019.1624375.
Huang, J. X., Y. Liu, S. Subhan, X. R. Quan, H. Zhong, J. Li, and Z. X. Zhao. 2021. “Fast deposition of Fe3+ chelated tannic acid network via salt induction over graphene oxide based SBS modified asphalt.” Constr. Build. Mater. 307 (Nov): 125009. https://doi.org/10.1016/j.conbuildmat.2021.125009.
Jiang, Z. L., S. M. Easa, C. B. Hu, and X. Y. Zheng. 2020. “Evaluation of new aspect of styrene-butadiene-styrene modified bitumens: Damping property and mechanism.” Constr. Build. Mater. 242 (May): 118185. https://doi.org/10.1016/j.conbuildmat.2020.118185.
Jiang, Z. L., C. B. Hu, S. Easa, X. Y. Zheng, and A. O. Abd El Halim. 2018. “Identifying optimal polymer type of modified asphalt based on damping characteristics.” Constr. Build. Mater. 173 (Jun): 308–316. https://doi.org/10.1016/j.conbuildmat.2018.03.278.
Le, J. L., M. O. Marasteanu, and M. Turos. 2020. “Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures.” Road Mater. Pavement Des. 21 (7): 1799–1814. https://doi.org/10.1080/14680629.2019.1567376.
Lee, C., X. Wei, J. W. Kysar, and J. Hone. 2008. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” Science 321 (5887): 385–388. https://doi.org/10.1126/science.1157996.
Li, X., Y. M. Wang, Y. L. Wu, H. R. Wang, M. Chen, H. D. Sun, and L. Fan. 2021a. “Properties and modification mechanism of asphalt with graphene as modifier.” Constr. Build. Mater. 272 (Feb): 121919. https://doi.org/10.1016/j.conbuildmat.2020.121919.
Li, X., Y. M. Wang, Y. L. Wu, H. R. Wang, Q. L. Wang, X. X. Zhu, X. C. Liu, H. D. Sun, and L. Fan. 2021b. “Effect of graphene on modified asphalt microstructures based on atomic force microscopy.” Materials 14 (13): 3677. https://doi.org/10.3390/ma14133677.
Liu, K. F., K. Zhang, J. L. Wu, B. Muhunthan, and X. M. Shi. 2018. “Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives.” J. Cleaner Prod. 193 (Aug): 87–96. https://doi.org/10.1016/j.jclepro.2018.05.040.
Lotfi, M., H. Yari, M. G. Sari, and A. Azizi. 2022. “Fabrication of a highly hard yet tough epoxy nanocomposite coating by incorporating graphene oxide nanosheets dually modified with amino silane coupling agent and hyperbranched polyester-amide.” Prog. Org. Coat. 162 (Jan): 106570. https://doi.org/10.1016/j.porgcoat.2021.106570.
Madarvoni, S., and S. P. S. Rama. 2022. “Dynamic mechanical behaviour of graphene, hexagonal boron nitride reinforced carbon-kevlar, hybrid fabric-based epoxy nanocomposites.” Polym. Polym. Compos. 30 (Jun): 09673911221107289. https://doi.org/10.1177/09673911221107289.
Miao, W. C., Z. Y. Xin, Y. Qin, Y. Wang, and H. H. Chen. 2022. “Dynamic modeling of particle reinforced composites and its Charpy impact test verification.” Mater. Today Commun. 30 (Mar): 103040. https://doi.org/10.1016/j.mtcomm.2021.103040.
Ministry of Transport of the People’s Republic of China. 2011. Standard test methods of asphalt and asphalt mixture for highway engineering. Beijing: Ministry of Transport of the People’s Republic of China.
Modarres, A. 2013. “Investigating the toughness and fatigue behavior of conventional and SBS modified asphalt mixes.” Constr. Build. Mater. 47 (Oct): 218–222. https://doi.org/10.1016/j.conbuildmat.2013.05.044.
Moreno-Navarro, F., M. Sol-Sanchez, F. Gamiz, and M. C. Rubio-Gamez. 2018. “Mechanical and thermal properties of graphene modified asphalt binders.” Constr. Build. Mater. 180 (Aug): 265–274. https://doi.org/10.1016/j.conbuildmat.2018.05.259.
Nascimento, L. F. C., S. N. Monteiro, L. H. L. Louro, F. S. da Luz, J. L. dos Santos, F. de Oliveira Braga, and R. L. S. B. Marcal. 2018. “Charpy impact test of epoxy composites reinforced with untreated and mercerized mallow fibers.” J. Mater. Res. Technol. 7 (4): 520–527. https://doi.org/10.1016/j.jmrt.2018.03.008.
Nazki, M. A., T. Chopra, and A. K. Chandrappa. 2020. “Rheological properties and thermal conductivity of bitumen binders modified with graphene.” Constr. Build. Mater. 238 (Mar): 117693. https://doi.org/10.1016/j.conbuildmat.2019.117693.
Nie, F. H., W. Jian, and D. Lau. 2021. “An atomistic study on the thermomechanical properties of graphene and functionalized graphene sheets modified asphalt.” Carbon 182 (Sep): 615–627. https://doi.org/10.1016/j.carbon.2021.06.055.
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. 2005. “Two-dimensional gas of massless Dirac fermions in graphene.” Nature 438 (7065): 197–200. https://doi.org/10.1038/nature04233.
Papageorgiou, D. G., L. A. Kinloch, and R. J. Young. 2017. “Mechanical properties of graphene and graphene-based nanocomposites.” Prog. Mater. Sci. 90 (Oct): 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004.
Rajasekaran, G., and A. Parashar. 2017. “Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects.” Diamond Relat. Mater. 74 (Apr): 90–99. https://doi.org/10.1016/j.diamond.2017.02.015.
Schaur, A., S. Unterberger, and R. Lackner. 2017. “Impact of molecular structure of SBS on thermomechanical properties of polymer modified bitumen.” Eur. Polym. J. 96 (Nov): 256–265. https://doi.org/10.1016/j.eurpolymj.2017.09.017.
Singh, D., A. Kuity, S. Girimath, A. Suchismita, and B. Showkat. 2020. “Investigation of chemical, microstructural, and rheological perspective of asphalt binder modified with graphene oxide.” J. Mater. Civ. Eng. 32 (11): 04020323. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003385.
Soler-Crespo, R. A., L. Mao, J. Wen, H. T. Nguyen, X. Zhang, X. Wei, J. Huang, S. T. Nguyen, and H. D. Espinosa. 2019. “Atomically thin polymer layer enhances toughness of graphene oxide monolayers.” Matter 1 (2): 369–388. https://doi.org/10.1016/j.matt.2019.04.005.
Verma, P. K., B. B. Sharma, A. Chaurasia, and A. Parashar. 2020. “Inter-granular fracture toughness of bi-crystalline graphene nanosheets.” Diamond Relat. Mater. 102 (Feb): 107667. https://doi.org/10.1016/j.diamond.2019.107667.
Vlassiouk, I., M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov. 2011. “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene.” ACS Nano 5 (7): 6069–6076. https://doi.org/10.1021/nn201978y.
Wang, L., M. Y. Shan, C. Q. Chang, and X. D. Zhou. 2020a. “The macro- and meso-cracking characteristics of warm mix crumb rubber asphalt mastics before and after aging.” Constr. Build. Mater. 262 (Nov): 120724. https://doi.org/10.1016/j.conbuildmat.2020.120724.
Wang, S., R. B. Mallick, and N. Rahbar. 2020b. “Toughening mechanisms in polypropylene fiber-reinforced asphalt mastic at low temperature.” Constr. Build. Mater. 248 (Jul): 118690. https://doi.org/10.1016/j.conbuildmat.2020.118690.
Wang, Y. C., Y. B. Zhu, Z. Z. He, and H. A. Wu. 2020c. “Multiscale investigations into the fracture toughness of SiC/graphene composites: Atomistic simulations and crack-bridging model.” Ceram. Int. 46 (18): 29101–29110. https://doi.org/10.1016/j.ceramint.2020.08.082.
Wang, Y. H., P. Polaczyk, J. X. He, H. Lu, R. Xiao, and B. S. Huang. 2022. “Dispersion, compatibility, and rheological properties of graphene-modified asphalt binders.” Constr. Build. Mater. 350 (Oct): 128886. https://doi.org/10.1016/j.conbuildmat.2022.128886.
Xu, P. J., P. L. Cong, D. G. Li, and X. T. Zhu. 2016. “Toughness modification of hyperbranched polyester on epoxy asphalt.” Constr. Build. Mater. 122 (Sep): 473–477. https://doi.org/10.1016/j.conbuildmat.2016.06.087.
Xu, P. J., X. T. Zhu, P. L. Cong, X. M. Du, and R. Zhang. 2018. “Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt.” Constr. Build. Mater. 165 (Mar): 295–302. https://doi.org/10.1016/j.conbuildmat.2017.12.182.
Zeng, Q., Y. R. Liu, Q. C. Liu, P. Liu, Y. H. He, and Y. Q. Zeng. 2020. “Preparation and modification mechanism analysis of graphene oxide modified asphalts.” Constr. Build. Mater. 238 (Mar): 117706. https://doi.org/10.1016/j.conbuildmat.2019.117706.
Zhang, F. L., L. Zhang, Y. Muhammad, Z. Y. Cai, X. X. Guo, Y. W. Guo, and K. Huang. 2021a. “Study on preparation and properties of new thermosetting epoxy asphalt.” Constr. Build. Mater. 311 (Dec): 125307. https://doi.org/10.1016/j.conbuildmat.2021.125307.
Zhang, L., F. L. Zhang, K. Huang, S. Zhou, and Y. W. Guo. 2021b. “Preparation and performance of graphene nanoplatelets-modified epoxy asphalt.” J. Perform. Constr. Facil. 35 (6): 04021083. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001661.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 11November 2023

History

Received: Feb 1, 2023
Accepted: Apr 24, 2023
Published online: Sep 4, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 4, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, College of Civil Engineering, Nanjing Forestry Univ., Nanjing, Jiangsu 210037, China. Email: [email protected]
Professor, College of Civil Engineering, Nanjing Forestry Univ., Nanjing, Jiangsu 210037, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share