Technical Papers
Sep 6, 2023

Laboratory Evaluation of Short- and Long-Term Aging Resistance of Rejuvenated RAP Mixtures

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 11

Abstract

This study evaluated the aging resistance of asphalt mixtures containing various percentages of reclaimed asphalt pavement (RAP) and rejuvenators after short-term (ST) and long-term (LT) aging. To this end, rubberized waste oils (i.e., waste engine and cooking oils) and pure waste oils were used as rejuvenators in asphalt mixtures including different percentages of RAP materials (i.e., 25%, 50%, and 75% by the weight of mixtures). The rejuvenated RAP mixtures underwent ST and LT aging processes separately. Afterward, the dynamic modulus (DM) test, semicircular bending (SCB) test, and moisture sensitivity (MS) test were conducted to evaluate the mechanical properties of different samples. The outcome results showed that before exposing samples to LT aging, the efficiency of all rejuvenated mixtures’ stiffness and also their cracking resistance were close together. After applying LT aging, the mechanical properties of RAP mixtures including rubberized rejuvenators were much better than pure rejuvenators. This issue indicated that rubberized rejuvenators and, consequently, RAP mixtures containing these rejuvenators, are more aging resistant and have a superior LT performance. Additionally, there was no concern observed regarding the moisture susceptibility of rejuvenated RAP mixtures before and after applying the aging process.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

AASHTO. 2002a. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T283. Washington, DC: AASHTO.
AASHTO. 2002b. Standard practice for mixture conditioning of hot-mix asphalt (HMA). AASHTO R30. Washington, DC: AASHTO.
AASHTO. 2003. Standard method of test for determining dynamic modulus of hot-mix asphalt concrete mixtures. AASHTO TP62-03. Washington, DC: AASHTO.
AASHTO. 2011. Plastic fines in graded aggregates and soils by use of the sand equivalent test. AASHTO T176. Washington, DC: AASHTO.
AASHTO. 2012. Developing dynamic modulus master curves for hot mix asphalt (HMA). AASHTO PP 62-10. Washington, DC: AASHTO.
Ali, A. W., Y. A. Mehta, A. Nolan, C. Purdy, and T. Bennert. 2016. “Investigation of the impacts of aging and RAP percentages on effectiveness of asphalt binder rejuvenators.” Constr. Build. Mater. 110 (May): 211–217. https://doi.org/10.1016/j.conbuildmat.2016.02.013.
Ameri, M., A. Mansourian, S. Pirmohammad, M. R. M. Aliha, and M. R. Ayatollahi. 2012. “Mixed mode fracture resistance of asphalt concrete mixtures.” Eng. Fract. Mech. 93 (Oct): 153–167. https://doi.org/10.1016/j.engfracmech.2012.06.015.
Ameri, M., A. Mansourkhaki, and D. Daryaee. 2018. “Evaluation of fatigue behavior of high reclaimed asphalt binder mixes modified with rejuvenator and softer bitumen.” Constr. Build. Mater. 191 (Dec): 702–712. https://doi.org/10.1016/j.conbuildmat.2018.09.182.
Amjadian, Y., H. Ziari, S. M. Sharifi Moghaddam Kakhki, A. Abbaspoor, and M. Hajiloo. 2022. “Evaluating the efficiency of SMA mixtures containing crumb rubber and WMA additives.” J. Transp. Eng., Part B: Pavements 148 (2): 1–8. https://doi.org/10.1061/JPEODX.0000361.
ASTM. 1997. Standard test method for soundness of aggregate by use of sodium sulfate or magnesium sulfate. ASTM C88. West Conshohocken, PA: ASTM.
ASTM. 2005. Standard test methods for quantitative extraction of bitumen from bituminous paving mixtures. ASTM D2172. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test methods for uncompacted void content of fine aggregate. ASTM C1252. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2013a. Standard test method for penetration of bituminous materials. ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2013b. Standard test method for flash and fire points by cleveland open cup tester. ASTM D92. West Conshohocken, PA: ASTM.
ASTM. 2014a. Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine. ASTM C131. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for softening point of bitumen. ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for resistance to plastic flow of bituminous mixtures using Marshall apparatus. ASTM D1559. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures. ASTM D8044. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for specific gravity and density of semi-solid bituminous materials. ASTM D70. West Conshohocken, PA: ASTM.
BSI (British Standards Institution). 1991. methods for determination of particle size and shape. BS 812-1. London: BSI.
Cavalli, M. C., M. Zaumanis, E. Mazza, M. N. Partl, and L. D. Poulikakos. 2018. “Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators.” Composites, Part B 141 (Nov): 174–181. https://doi.org/10.1016/j.compositesb.2017.12.060.
Devulapalli, L., S. Kothandaraman, and G. Sarang. 2020. “Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP.” Constr. Build. Mater. 254 (Sep): 119298. https://doi.org/10.1016/j.conbuildmat.2020.119298.
Dhasmana, H., K. Hossain, and A. S. Karakas. 2019. “Effect of long-term ageing on the rheological properties of rejuvenated asphalt binder.” Road Mater. Pavement Des. 22 (6): 1268–1286. https://doi.org/10.1080/14680629.2019.1686051.
Dong, R., and M. Zhao. 2018. “Research on the pyrolysis process of crumb tire rubber in waste cooking oil.” Renewable Energy 125 (Sep): 557–567. https://doi.org/10.1016/j.renene.2018.02.133.
Dugan, C. R., C. R. Sumter, S. Rani, S. A. Ali, E. A. O’Rear, and M. Zaman. 2020. “Rheology of virgin asphalt binder combined with high percentages of RAP binder rejuvenated with waste vegetable oil.” ACS Omega 5 (26): 15791–15798. https://doi.org/10.1021/acsomega.0c00377.
Elkashef, M., R. C. Williams, and E. Cochran. 2018. “Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures.” Int. J. Fatigue 108 (Jun): 90–95. https://doi.org/10.1016/j.ijfatigue.2017.11.013.
Elseifi, M. A., L. N. Mohammad, H. Ying, and S. Cooper. 2012. “Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures.” Supplement, Road Mater. Pavement Des. 13 (S1): 124–139. https://doi.org/10.1080/14680629.2012.657035.
Fethiza Ali, B., K. Soudani, and S. Haddadi. 2022. “Effect of waste plastic and crumb rubber on the thermal oxidative aging of modified bitumen.” Road Mater. Pavement Des. 23 (1): 222–233. https://doi.org/10.1080/14680629.2020.1820893.
Foroutan Mirhosseini, A., A. Kavussi, S. A. Tahami, and S. Dessouky. 2018. “Characterizing temperature performance of bio-modified binders containing RAP binder.” J. Mater. Civ. Eng. 30 (8): 4018176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002373.
Haghshenas, H. F., Y. R. Kim, S. R. Kommidi, D. Nguyen, D. F. Haghshenas, and M. D. Morton. 2018. “Evaluation of long-term effects of rejuvenation on reclaimed binder properties based on chemical-rheological tests and analyses.” Mater. Struct. 51 (Oct): 1–3. https://doi.org/10.1617/s11527-018-1262-4.
Kaseer, F., A. E. Martin, and E. Arámbula-Mercado. 2019. “Use of recycling agents in asphalt mixtures with high recycled materials contents in the United States: A literature review.” Constr. Build. Mater. 211 (Jun): 974–987. https://doi.org/10.1016/j.conbuildmat.2019.03.286.
Kim, S. S., J. J. Yang, and R. A. Etheridge. 2020. “Effects of mix design variables on flexibility index of asphalt concrete mixtures.” Int. J. Pavement Eng. 21 (10): 1275–1280. https://doi.org/10.1080/10298436.2018.1538514.
Kim, Y. R., C. Hintz, F. Y. Rad, S. Underwood, and M. J. Farrar. 2013. Long-term aging of asphalt mixtures for performance testing and prediction. Washington, DC: Transportation Research Board.
Li, H., B. Dong, D. Zhao, P. Guo, and J. Zhang. 2019. “Physical, rheological and stability properties of desulfurized rubber asphalt and crumb rubber asphalt.” Arabian J. Sci. Eng. 44 (5): 5043–5056. https://doi.org/10.1007/s13369-018-3684-2.
Li, H., F. Zhang, Z. Feng, W. Li, and X. Zou. 2021. “Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture.” Constr. Build. Mater. 276 (Mar): 122138. https://doi.org/10.1016/j.conbuildmat.2020.122138.
Li, P., X. Jiang, Z. Ding, J. Zhao, and M. Shen. 2018. “Analysis of viscosity and composition properties for crumb rubber modified asphalt.” Constr. Build. Mater. 169 (Apr): 638–647. https://doi.org/10.1016/j.conbuildmat.2018.02.174.
López, C., A. González, G. Thenoux, G. Sandoval, and J. Marcobal. 2019. “Stabilized emulsions to produce warm asphalt mixtures with reclaimed asphalt pavements.” J. Cleaner Prod. 209 (Feb): 1461–1472. https://doi.org/10.1016/j.jclepro.2018.11.138.
Ma, J., M. Hu, D. Sun, T. Lu, G. Sun, S. Ling, and L. Xu. 2021a. “Understanding the role of waste cooking oil residue during the preparation of rubber asphalt.” Resour. Conserv. Recycl. 167 (Sep): 105235. https://doi.org/10.1016/j.resconrec.2020.105235.
Ma, J., G. Sun, D. Sun, Y. Zhang, A. C. Falchetto, T. Lu, M. Hu, and Y. Yuan. 2020. “Rubber asphalt modified with waste cooking oil residue: Optimized preparation, rheological property, storage stability and aging characteristic.” Constr. Build. Mater. 258 (Oct): 120372. https://doi.org/10.1016/j.conbuildmat.2020.120372.
Ma, Q., Z. Guo, P. Guo, L. Sun, F. Yang, and H. Li. 2021b. “Research on fatigue prediction model of asphalt mixture with high RAP content.” Sustainability 13 (14): 7995. https://doi.org/10.3390/su13147995.
Ma, T., H. Wang, X. Huang, Z. Wang, and F. Xiao. 2015. “Laboratory performance characteristics of high modulus asphalt mixture with high-content RAP.” Constr. Build. Mater. 101 (Dec): 975–982. https://doi.org/10.1016/j.conbuildmat.2015.10.160.
Ma, T., Y. Zhao, X. Huang, and Y. Zhang. 2016. “Characteristics of desulfurized rubber asphalt and mixture.” KSCE J. Civ. Eng. 20 (4): 1347–1355. https://doi.org/10.1007/s12205-015-1195-1.
Ma, Y., S. Wang, H. Zhou, W. Hu, P. Polaczyk, and B. Huang. 2022. “Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability.” J. Cleaner Prod. 334 (Feb): 130102. https://doi.org/10.1016/j.jclepro.2021.130102.
Majidifard, H., N. Tabatabaee, and W. Buttlar. 2019. “Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil.” J. Traffic Transp. Eng. 6 (4): 396–406. https://doi.org/10.1016/j.jtte.2018.11.002.
Mamun, A. A., and H. I. Al-Abdul Wahhab. 2018. “Evaluation of waste engine oil-rejuvenated asphalt concrete mixtures with high RAP content.” Adv. Mater. Sci. Eng. 2018 (Dec): 1–8. https://doi.org/10.1155/2018/7386256.
Mamun, A. A., H. I. Al-Abdul Wahhab, and M. A. Dalhat. 2020. “Comparative evaluation of waste cooking oil and waste engine oil rejuvenated asphalt concrete mixtures.” Arabian J. Sci. Eng. 45 (10): 7987–7997. https://doi.org/10.1007/s13369-020-04523-5.
Mansourkhaki, A., M. Ameri, M. Habibpour, and B. Shane Underwood. 2020a. “Chemical composition and rheological characteristics of binders containing RAP and rejuvenator.” J. Mater. Civ. Eng. 32 (4): 04020026. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003016.
Mansourkhaki, A., M. Ameri, M. Habibpour, and B. Shane Underwood. 2020b. “Relations between colloidal indices and low-temperature properties of reclaimed binder modified with softer binder, oil-rejuvenator and polybutadiene rubber.” Constr. Build. Mater. 239 (Apr): 117800. https://doi.org/10.1016/j.conbuildmat.2019.117800.
Miró, R., G. Valdés, A. Martínez, P. Segura, and C. Rodríguez. 2011. “Evaluation of high modulus mixture behaviour with high reclaimed asphalt pavement (RAP) percentages for sustainable road construction.” Constr. Build. Mater. 25 (10): 3854–3862. https://doi.org/10.1016/j.conbuildmat.2011.04.006.
Mogawer, W., T. Bennert, J. S. Daniel, R. Bonaquist, A. Austerman, and A. Booshehrian. 2012. “Performance characteristics of plant produced high RAP mixtures.” Supplement, Road Mater. Pavement Des. 13 (S1): 183–208. https://doi.org/10.1080/14680629.2012.657070.
Moghaddam, T. B., and H. Baaj. 2016. “The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review.” Constr. Build. Mater. 114 (Jul): 805–816. https://doi.org/10.1016/j.conbuildmat.2016.04.015.
Mullapudi, R. S., P. S. Chowdhury, and K. S. Reddy. 2020. “Fatigue and healing characteristics of RAP binder blends.” J. Mater. Civ. Eng. 32 (8): 4020214. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003284.
Nobakht, M., and M. S. Sakhaeifar. 2018. “Dynamic modulus and phase angle prediction of laboratory aged asphalt mixtures.” Constr. Build. Mater. 190 (Nov): 740–751. https://doi.org/10.1016/j.conbuildmat.2018.09.160.
Obaid, A., M. D. Nazzal, L. Abu Qtaish, S. S. Kim, A. Abbas, M. Arefin, and T. Quasem. 2019. “Effect of RAP source on cracking resistance of asphalt mixtures with high RAP contents.” J. Mater. Civ. Eng. 31 (10): 4019213. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002817.
Pan, P., Y. Kuang, X. Hu, and X. Zhang. 2018. “A comprehensive evaluation of rejuvenator on mechanical properties, durability, and dynamic characteristics of artificially aged asphalt mixture.” Materials (Basel) 11 (9): 1554. https://doi.org/10.3390/ma11091554.
Pradhan, S. K., and U. C. Sahoo. 2021. “Evaluation of recycled asphalt mixtures rejuvenated with Madhuca longifolia (Mahua) oil.” Int. J. Pavement Res. Technol. 14 (1): 43–53. https://doi.org/10.1007/s42947-020-0279-6.
Pradhan, S. K., and U. C. Sahoo. 2022. “Influence of softer binder and rejuvenator on bituminous mixtures containing reclaimed asphalt pavement (RAP) material.” Int. J. Transp. Sci. Technol. 11 (1): 46–59. https://doi.org/10.1016/j.ijtst.2020.12.001.
Rathore, M., V. Haritonovs, R. M. Meri, and M. Zaumanis. 2022. “Rheological and chemical evaluation of aging in 100% reclaimed asphalt mixtures containing rejuvenators.” Constr. Build. Mater. 318 (Oct): 126026. https://doi.org/10.1016/j.conbuildmat.2021.126026.
Saha, G., and K. P. Biligiri. 2016. “Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research.” Constr. Build. Mater. 105 (Feb): 103–112. https://doi.org/10.1016/j.conbuildmat.2015.12.046.
Shen, J., S. Amirkhanian, and B. Tang. 2007. “Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures.” Constr. Build. Mater. 21 (5): 958–964. https://doi.org/10.1016/j.conbuildmat.2006.03.006.
Sheng, Y., H. Li, J. Geng, Y. Tian, Z. Li, and R. Xiong. 2017. “Production and performance of desulfurized rubber asphalt binder.” Int. J. Pavement Res. Technol. 10 (3): 262–273. https://doi.org/10.1016/j.ijprt.2017.02.002.
Tang, N., W. Huang, and F. Xiao. 2016. “Chemical and rheological investigation of high-cured crumb rubber-modified asphalt.” Constr. Build. Mater. 123 (Oct): 847–854. https://doi.org/10.1016/j.conbuildmat.2016.07.131.
Tauste, R., F. Moreno-Navarro, M. Sol-Sánchez, and M. C. Rubio-Gámez. 2018. “Understanding the bitumen ageing phenomenon: A review.” Constr. Build. Mater. 192 (Dec): 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169.
Taziani, E. A., E. Toraldo, M. Crispino, and F. Giustozzi. 2017. “Application of rejuvenators and virgin bitumen to restore physical and rheological properties of RAP binder.” Aust. J. Civ. Eng. 15 (2): 73–79. https://doi.org/10.1080/14488353.2017.1383580.
Wang, C., C. Castrorena, J. Zhang, and Y. Richard Kim. 2017. “Application of time-temperature superposition principle on fatigue failure analysis of asphalt binder.” J. Mater. Civ. Eng. 29 (1): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001730.
Wang, H., X. Liu, P. Apostolidis, M. van de Ven, S. Erkens, and A. Skarpas. 2020. “Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen.” Mater. Struct. 53 (2): 1–15. https://doi.org/10.1617/s11527-020-1451-9.
Xie, Z., H. Rizvi, C. Purdy, A. Ali, and Y. Mehta. 2019. “Effect of rejuvenator types and mixing procedures on volumetric properties of asphalt mixtures with 50% RAP.” Constr. Build. Mater. 218 (Sep): 457–464. https://doi.org/10.1016/j.conbuildmat.2019.05.093.
Yang, H., and R. Dong. 2022. “Investigating the properties of rejuvenated asphalt with the modified rejuvenator prepared by waste cooking oil and waste tire crumb rubber.” Constr. Build. Mater. 315 (Jan): 125692.
Yi, X., R. Dong, C. Shi, J. Yang, and Z. Leng. 2023. “The influence of the mass ratio of crumb rubber and waste cooking oil on the properties of rubberised bio-rejuvenator and rejuvenated asphalt.” Road Mater. Pavement Des. 24 (2): 578–591. https://doi.org/10.1080/14680629.2022.2041070.
Yi, X., R. Dong, and N. Tang. 2020. “Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber.” Constr. Build. Mater. 236 (Mar): 117621. https://doi.org/10.1016/j.conbuildmat.2019.117621.
Yi, X., R. Dong, M. Zhao, C. Shi, and J. Yang. 2021. “The interaction mechanism and rejuvenation effect of crumb rubber and waste cooking oil blends.” Constr. Build. Mater. 302 (Oct): 124215.
Yousefi, A., A. Behnood, A. Nowruzi, and H. Haghshenas. 2021a. “Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP).” Constr. Build. Mater. 268 (Jan): 121200. https://doi.org/10.1016/j.conbuildmat.2020.121200.
Yousefi, A. A., S. Sobhi, M. M. Aliha, S. Pirmohammad, and H. F. Haghshenas. 2021b. “Cracking properties of warm mix asphalts containing reclaimed asphalt pavement and recycling agents under different loading modes.” Constr. Build. Mater. 300 (Jun): 124130. https://doi.org/10.1016/j.conbuildmat.2021.124130.
Yu, J., Y. Guo, L. Peng, F. Guo, and H. Yu. 2020. “Rejuvenating effect of soft bitumen, liquid surfactant, and bio-rejuvenator on artificial aged asphalt.” Constr. Build. Mater. 254 (Sep): 119336. https://doi.org/10.1016/j.conbuildmat.2020.119336.
Zarei, M., A. A. Kordani, and M. Zahedi. 2021. “Evaluation of fracture behavior of modified warm mix asphalt (WMA) under Modes I and II at low and intermediate temperatures.” Theor. Appl. Fract. Mech. 114 (Jan): 103015. https://doi.org/10.1016/j.tafmec.2021.103015.
Zaumanis, M., R. B. Mallick, and R. Frank. 2014. “100% recycled hot mix asphalt: A review and analysis.” Resour. Conserv. Recycl. 92 (Nov): 230–245. https://doi.org/10.1016/j.resconrec.2014.07.007.
Zhang, R., Z. You, H. Wang, M. Ye, Y. K. Yap, and C. Si. 2019. “The impact of bio-oil as rejuvenator for aged asphalt binder.” Constr. Build. Mater. 196 (Jan): 134–143. https://doi.org/10.1016/j.conbuildmat.2018.10.168.
Zhao, M., and R. Dong. 2021. “Reaction mechanism and rheological properties of waste cooking oil pre-desulfurized crumb tire rubber/SBS composite modified asphalt.” Constr. Build. Mater. 274 (Mar): 122083. https://doi.org/10.1016/j.conbuildmat.2020.122083.
Ziari, H., M. R. M. Aliha, A. Moniri, and Y. Saghafi. 2020. “Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber.” Constr. Build. Mater. 230 (Jan): 117015. https://doi.org/10.1016/j.conbuildmat.2019.117015.
Ziari, H., P. Ayar, and Y. Amjadian. 2022. “Mechanical performance evaluation of crumb rubber enriched rejuvenator modified RAP mixtures.” Constr. Build. Mater. 342 (Part B): 127951. https://doi.org/10.1016/j.conbuildmat.2022.127951.
Ziari, H., A. Moniri, and N. Norouzi. 2019. “The effect of nanoclay as bitumen modifier on rutting performance of asphalt mixtures containing high content of rejuvenated reclaimed asphalt pavement.” Pet. Sci. Technol. 37 (17): 1946–1951. https://doi.org/10.1080/10916466.2018.1471489.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 11November 2023

History

Received: Dec 31, 2022
Accepted: Apr 11, 2023
Published online: Sep 6, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 6, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering, Iran Univ. of Science and Technology, Tehran 16846-13114, Iran (corresponding author). ORCID: https://orcid.org/0000-0003-3048-0976. Email: [email protected]
Assistant Professor, School of Civil Engineering, Iran Univ. of Science and Technology, Tehran 16846-13114, Iran. ORCID: https://orcid.org/0000-0002-9856-5995. Email: [email protected]
Youssef Amjadian [email protected]
Ph.D. Student, School of Civil Engineering, Iran Univ. of Science and Technology, Tehran 16846-13114, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share