Technical Papers
May 31, 2023

Uniform Composition of Sol-Gel Synthetic Aluminosilicate Precursor as a Key Factor for the Production of Geopolymers

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

This paper aims to study the fabrication of geopolymers from precursors synthesized by the sol-gel process. Two precursors were produced: the first one from a physical mixture of silica and alumina synthesized separately by the sol-gel technique, and the second one from a one-step co-condensation sol-gel process. The sol-gel products and a commercial metakaolin were activated with sodium hydroxide and sodium silicate to produce the geopolymers. The physically-mixed precursor did not lead to enough hard geopolymers, thus presenting a rubbery behavior. However, the geopolymers derived from the one-step sol-gel aluminosilicate reached adequate strength at 28 days with a lower density than from the commercial metakaolin. This confirms the good alkaline activity of this sol-gel precursor, which could be an alternative source to produce geopolymers or to be used as a reinforcement additive. Such results also underline that a uniform composition of the precursor is a key factor to produce geopolymers with adequate properties.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors thank financial support from CNPq (301423/2018-0) and FAPEMIG.

References

Autef, A., E. Joussein, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, and S. Rossignol. 2013a. “Role of metakaolin dehydroxylation in geopolymer synthesis.” Powder Technol. 250 (Dec): 33–39. https://doi.org/10.1016/j.powtec.2013.09.022.
Autef, A., E. Joussein, A. Poulesquen, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, and S. Rossignol. 2013b. “Influence of metakaolin purities on potassium geopolymer formulation: The existence of several networks.” J. Colloid Interface Sci. 408 (Oct): 43–53. https://doi.org/10.1016/j.jcis.2013.07.024.
Catauro, M., F. Bollino, A. S. Cattaneo, and P. Mustarelli. 2017. “Al2O3·2SiO2 powders synthesized via sol–gel as pure raw material in geopolymer preparation.” J. Am. Ceram. Soc. 100 (5): 1919–1927. https://doi.org/10.1111/jace.14724.
Catauro, M., F. Bollino, A. Dell’Era, and S. V. Ciprioti. 2016. “Pure Al2O3·2SiO2 synthesized via a sol-gel technique as a raw material to replace metakaolin: Chemical and structural characterization and thermal behavior.” Ceram. Int. 42 (14): 16303–16309. https://doi.org/10.1016/j.ceramint.2016.07.179.
Catauro, M., F. Papale, G. Lamanna, and F. Bollino. 2015. “Geopolymer/PEG hybrid materials synthesis and investigation of the polymer influence on microstructure and mechanical behavior.” Mater. Res. 18 (4): 698–705. https://doi.org/10.1590/1516-1439.342814.
Chen, S., K. Wang, E. Wei, Y. Muhammad, M. Yi, Y. Wei, and T. Fujita. 2022. “Preparation of Al2O3-2SiO2/geopolymer powder by hydrolytic sol-gel method and its activity characterization and research on the reaction mechanism.” Powder Technol. 397 (Jan): 117026. https://doi.org/10.1016/j.powtec.2021.11.070.
Chen, Y.-C., X. Ai, C.-Z. Huang, and B.-Y. Wang. 2000. “Preparation of α-alumina coated carbide tools by the sol-gel process.” Mater. Sci. Eng. 288 (1): 19–25. https://doi.org/10.1016/S0921-5093(00)00840-6.
Cividanes, L. S., T. M. B. Campos, L. A. Rodrigues, D. D. Brunelli, and G. P. Thim. 2010. “Review of mullite synthesis routes by sol-gel method.” J. Sol-Gel Sci. Technol. 55 (1): 111–125. https://doi.org/10.1007/s10971-010-2222-9.
Costa, L. M., N. G. S. Almeida, M. Houmard, P. R. Cetlin, G. J. B. Silva, and M. T. P. Aguilar. 2021. “Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers.” Appl. Clay Sci. 215 (Dec): 106312. https://doi.org/10.1016/j.clay.2021.106312.
Danks, A. E., S. R. Hall, and Z. Schnepp. 2016. “The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis.” Mater. Horiz. 3 (2): 91–112. https://doi.org/10.1039/C5MH00260E.
Davidovits, J. 1988. “Are modern cements better than ancient cements?” Struct. Surv. 6 (2): 124–129. https://doi.org/10.1108/eb006279.
de Oliveira, T. C., C. A. Ribeiro, D. D. Brunelli, L. A. Rodrigues, and G. P. Thim. 2010. “The kinetic of mullite crystallization: Effect of water content.” J. Non-Cryst. Solids 356 (52–54): 2980–2985. https://doi.org/10.1016/j.jnoncrysol.2010.05.078.
de Souza, T. C. C., A. Brasil, L. O. Ladeira, and M. Houmard. 2019. “Influence of the nanostructure of silica supports on the growth and morphology of MWCNTs synthesized by CCVD method.” Ceram. Int. 45 (10): 13297–13307. https://doi.org/10.1016/j.ceramint.2019.04.019.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Feng, D., J. L. Provis, and J. S. J. van Deventer. 2012. “Thermal activation of albite for the synthesis of one-part mix geopolymers.” J. Am. Ceram. Soc. 95 (2): 565–572. https://doi.org/10.1111/j.1551-2916.2011.04925.x.
Figueiredo, R. A. M., P. R. G. Brandão, M. Soutsos, A. B. Henriques, A. Fourie, and D. B. Mazzinghy. 2021. “Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders.” Mater. Lett. 288 (Apr): 129333. https://doi.org/10.1016/j.matlet.2021.129333.
Fletcher, R. A., K. J. D. MacKenzie, C. L. Nicholson, and S. Shimada. 2005. “The composition range of aluminosilicate geopolymers.” J. Eur. Ceram. Soc. 25 (9): 1471–1477. https://doi.org/10.1016/j.jeurceramsoc.2004.06.001.
Gao, K., K.-L. Lin, D. Wang, C.-L. Hwang, H.-S. Shiu, Y.-M. Chang, and T.-W. Cheng. 2014. “Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers.” Constr. Build. Mater. 53 (Feb): 503–510. https://doi.org/10.1016/j.conbuildmat.2013.12.003.
Gevaudan, J. P., J. D. Wallat, B. Lama, and W. V. Srubar III. 2020. “PVA- and PEG-assisted sol-gel synthesis of aluminosilicate precursors for N-A-S-H geopolymer cements.” J. Am. Ceram. Soc. 103 (2): 859–877. https://doi.org/10.1111/jace.16764.
Gharzouni, A., E. Joussein, B. Samet, S. Baklouti, and S. Rossignol. 2015. “Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation.” J. Non-Cryst. Solids 410 (Feb): 127–134. https://doi.org/10.1016/j.jnoncrysol.2014.12.021.
Glasby, T., J. Day, R. Genrich, and J. Aldred. 2015. “EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport.” In Proc., 27th Biennial National Conf. of the Concrete Institute of Australia in Conjunction With the 69th RILEM Week, edited by J. Sanjayan. Sydney, Australia: Concrete Institute of Australia.
Granizo, N., A. Palomo, and A. Fernandez-Jiménez. 2014. “Effect of temperature and alkaline concentration on metakaolin leaching kinetics.” Ceram. Int. 40 (7): 8975–8985. https://doi.org/10.1016/j.ceramint.2014.02.071.
Gregg, S. J., and K. S. W. Sing. 1982. Adsorption, surface area and porosity. 2nd ed. London: Academic Press.
He, Y., X. Cui, X. Liu, Y. Wang, J. Zhang, and K. Liu. 2013. “Preparation of self-supporting NaA zeolite membranes using geopolymers.” J. Membr. Sci. 447 (Nov): 66–72. https://doi.org/10.1016/j.memsci.2013.07.027.
Houmard, M., E. H. M. Nunes, D. C. L. Vasconcelos, G. Berthomé, J.-C. Joud, M. Langlet, and W. L. Vasconcelos. 2014. “Correlation between sol–gel reactivity and wettability of silica films deposited on stainless steel.” Appl. Surf. Sci. 289 (Jan): 218–223. https://doi.org/10.1016/j.apsusc.2013.10.137.
Hu, Y., et al. 2019. “Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud.” Constr. Build. Mater. 200 (Mar): 398–407. https://doi.org/10.1016/j.conbuildmat.2018.12.122.
Juengsuwattananon, K., F. Winnefeld, P. Chindaprasirt, and K. Pimraksa. 2019. “Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer.” Constr. Build. Mater. 226 (Nov): 406–417. https://doi.org/10.1016/j.conbuildmat.2019.07.146.
Liu, X., J. Jiang, H. Zhang, M. Li, Y. Wu, L. Guo, W. Wang, P. Duan, W. Zhang, and Z. Zhang. 2020. “Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash.” Appl. Clay Sci. 196 (Oct): 105769. https://doi.org/10.1016/j.clay.2020.105769.
Liu, Y., S. Lei, M. Lin, Y. Li, Z. Ye, and Y. Fan. 2017. “Assessment of pozzolanic activity of calcined coal-series kaolin.” Appl. Clay Sci. 143 (Jul): 159–167. https://doi.org/10.1016/j.clay.2017.03.038.
Mermerdaş, K., S. İpek, and Z. Mahmood. 2021. “Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles.” Constr. Build. Mater. 283 (May): 122756. https://doi.org/10.1016/j.conbuildmat.2021.122756.
Mota, T. L. R., A. L. M. Gomes, H. G. Palhares, E. H. M. Nunes, and M. Houmard. 2019. “Influence of the synthesis parameters on the mesoporous structure and adsorption behavior of silica xerogels fabricated by sol–gel technique.” J. Sol-Gel Sci. Technol. 92 (3): 681–694. https://doi.org/10.1007/s10971-019-05131-y.
Nematollah, B., J. Sanjayan, and F. U. A. Shaikh. 2015. “Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate.” Ceram. Int. 41 (4): 5696–5704. https://doi.org/10.1016/j.ceramint.2014.12.154.
Novais, R. M., G. Ascensão, D. M. Tobaldi, M. P. Seabra, and J. A. Labrincha. 2018. “Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters.” J. Cleaner Prod. 171 (Jan): 783–794. https://doi.org/10.1016/j.jclepro.2017.10.078.
Pereira, M., D. C. L. Vasconcelos, and W. L. Vasconcelos. 2019. “Synthetic aluminosilicates for geopolymer production.” Mater. Res. 22 (2): e20180508. https://doi.org/10.1590/1980-5373-mr-2018-0508.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Sato, J., K. Shiota, and M. Takaoka. 2020. “Stabilization of lead with amorphous solids synthesized from aluminosilicate gel.” J. Hazard. Mater. 385 (Mar): 121109. https://doi.org/10.1016/j.jhazmat.2019.121109.
Schmidt, H. 1988. “Chemistry of material preparation by the sol-gel process.” J. Non-Cryst. Solids 100 (1–3): 51–64. https://doi.org/10.1016/0022-3093(88)90006-3.
Singh, N. B., and B. Middendorf. 2020. “Geopolymers as an alternative to Portland cement: An overview.” Constr. Build. Mater. 237 (Mar): 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455.
Tironi, A., F. Cravero, A. N. Scian, and E. F. Irassar. 2017. “Pozzolanic activity of calcined halloysite-rich kaolinitic clays.” Appl. Clay Sci. 147 (Oct): 11–18. https://doi.org/10.1016/j.clay.2017.07.018.
Torres-Carrasco, M., and F. Puertas. 2015. “Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation.” J. Cleaner Prod. 90 (Mar): 397–408. https://doi.org/10.1016/j.jclepro.2014.11.074.
Valcke, S. L. A., P. Pipilikaki, H. R. Fischer, M. H. W. Verkuijlen, and E. R. H. van Eck. 2015. “FT-IR and 29Si-NMR for evaluating aluminium–silicate precursors for geopolymers.” Mater. Struct. 48 (3): 557–569. https://doi.org/10.1617/s11527-014-0432-2.
van Deventer, J. S. J., J. L. Provis, P. Duxson, and D. G. Brice. 2010. “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials.” Waste Biomass Valorization 1 (1): 145–155. https://doi.org/10.1007/s12649-010-9015-9.
Walkley, B., R. San Nicolas, M.-A. Sani, J. D. Gehman, J. S. J. van Deventer, and J. L. Provis. 2016a. “Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.” Dalton Trans. 45 (13): 5521–5535. https://doi.org/10.1039/C5DT04878H.
Walkley, B., R. San Nicolas, M.-A. Sani, J. D. Gehman, J. S. J. van Deventer, and J. L. Provis. 2016b. “Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders.” Powder Technol. 297 (Sep): 17–33. https://doi.org/10.1016/j.powtec.2016.04.006.
Wang, R., J. Wang, T. Dong, and G. Ouyang. 2020. “Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study.” Constr. Build. Mater. 240 (Apr): 117935. https://doi.org/10.1016/j.conbuildmat.2019.117935.
Yeddula, B. S. R., and S. Karthiyaini. 2020. “Experimental investigations and prediction of thermal behaviour of ferrosialate-based geopolymer mortars.” Arab. J. Sci. Eng. 45 (5): 3937–3958. https://doi.org/10.1007/s13369-019-04314-7.
Zheng, G., X. Cui, W. Zhang, and Z. Tong. 2009. “Preparation of geopolymer precursors by sol-gel method and their characterization.” J. Mater. Sci. 44 (15): 3991–3996. https://doi.org/10.1007/s10853-009-3549-x.
Zheng, G., X. Cui, W. Zhang, Z. Tong, and F. Li. 2012. “Preparation of nano-sized Al2O32SiO2 powder by sol–gel plus azeotropic distillation method.” Particuology 10 (1): 42–45. https://doi.org/10.1016/j.partic.2011.07.007.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Sep 7, 2022
Accepted: Jan 24, 2023
Published online: May 31, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 31, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Bruna Dias de Andrade [email protected]
Departamento de Engenharia de Materiais e Construção, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brasil. Email: [email protected]
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brasil; Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), R. Professor José Vieira de Mendonça, n° 520 – Engenho Nogueira, Belo Horizonte, MG CEP: 31310-260, Brasil. ORCID: https://orcid.org/0000-0002-0656-649X. Email: [email protected]
Maria Teresa Paulino Aguilar [email protected]
Professor, Departamento de Engenharia de Materiais e Construção, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brasil. Email: [email protected]
Professor, Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brasil; Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), R. Professor José Vieira de Mendonça, n° 520 – Engenho Nogueira, Belo Horizonte, MG CEP: 31310-260, Brasil (corresponding author). ORCID: https://orcid.org/0000-0002-1543-5416. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share