Abstract

This research investigated the synergistic adoption of sodium silicate (SS) and the synthetic calcium silicate hydrates (C-S-Hs)/polycarboxylate (PCE) nanocomposites on the hydration behavior of portland cement containing 20% by weight of lithium slag (LS). Effects of SS and C-S-Hs-PCE on rheological performance, mechanical strength development, and hydration process were evaluated. Results showed that C-S-Hs-PCE was advantageous for modifying the rheological performance of fresh LS-cement binder, while SS increased the rheology and yield stress and shortened setting time of the LS-cement binder. C-S-Hs-PCE promoted the hydration of silicates to form abundant CH, and SS generated the dissolution of metallic ions from LS. The hastened dissolution of LS accelerated the formation of ettringite (AFt) as well as C-S-H gel. Because the hydration of cement and pozzolanic reaction of LS were both promoted, the hydration products of hardened matrix were increased, and the interlaced combination structure of hydrates in the matrix was greatly improved, which was favorable for the development of mechanical strength. The findings provide theoretical guidelines for modifying the properties of blended cements by uniting nanoparticles and chemicals.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China (51808369), CRSRI Open Research Program (CKWV20221020/KY), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1577, SJCX23_1722).
Author contributions: Yan He, formal analysis, writing original draft; Mingjing Jiang, supervision, software, resources; Shuhua Liu, supervision, writing, review & editing; Junan Shen, resources, conceptualization, visualization; and R.D. Hooton, supervision, resources.

References

Alizadeh, R., L. Raki, J. M. Makar, J. J. Beaudoin, and I. Moudrakovski. 2009. “Hydration of tricalcium silicate in the presence of synthetic calcium-silicate-hydrate.” J. Mater. Chem. 19 (May): 7937–7946. https://doi.org/10.1039/b910216g.
Al Makhadmeh, W., and A. Soliman. 2020. “Effect of activator nature on property development of alkali-activated slag binders.” J. Sustainable Cem.-Based Mater. 10 (Oct): 240–256. https://doi.org/10.1080/21650373.2020.1833256.
Almohammad-albakkar, M., and K. Behfarnia. 2021. “Effects of the combined usage of micro and nano-silica on the drying shrinkage and compressive strength of the self-compacting concrete.” J. Sustainable Cem.-Based Mater. 10 (Jun): 92–110. https://doi.org/10.1080/21650373.2020.1755382.
Alp, I., H. Deveci, Y. H. Sungun, A. O. Yilmaz, A. Kesimal, and E. Yilmaz. 2009. “Pozzolanic characteristics of a natural raw material for use in blended cements.” Iran. J. Sci. Technol. Trans. B Eng. 33 (Aug): 291–300.
Bernal, S. A., J. L. Provis, V. Rose, and R. M. De Gutierrez. 2011. “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends.” Cem. Concr. Compos. 33 (1): 46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004.
Bernal, S. A., E. D. Rodriguez, A. P. Kirchheim, and J. L. Provis. 2016. “Management and valorisation of wastes through use in producing alkali-activated cement materials.” J. Chem. Technol. Biotechnol. 91 (May): 2365–2388. https://doi.org/10.1002/jctb.4927.
Brykov, A. S., V. V. Danilov, V. I. Korneev, and A. V. Larichkov. 2002. “Effect of hydrated sodium silicates on cement paste hardening.” Russ. J. Appl. Chem. 75 (May): 1577–1579. https://doi.org/10.1023/A:1022251028590.
Cao, S., E. Yilmaz, and W. D. Song. 2019. “Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill.” Constr. Build. Mater. 223 (Aug): 44–54. https://doi.org/10.1016/j.conbuildmat.2019.06.221.
Cavusoglu, I., E. Yilmaz, and A. O. Yilmaz. 2021a. “Additivity effect on fresh and hardened properties of cemented coal fly ash backfill containing water-reducing admixtures.” Constr. Build. Mater. 267 (Jan): 121021. https://doi.org/10.1016/j.conbuildmat.2020.121021.
Cavusoglu, I., E. Yilmaz, and A. O. Yilmaz. 2021b. “Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill.” Powder Technol. 384 (May): 17–28. https://doi.org/10.1016/j.powtec.2021.02.013.
Chinese Standard. 2011. Test methods for water requirements of normal consistency, setting time and soundness of the portland cement. GB/T 1346-2011. Beijing: Chinese Standard.
Chinese Standard. 2021. Test methods of cement mortar strength (ISO method). GB/T 17671-2021. Beijing: Chinese Standard.
Guo, S., Y. Zhang, K. Wang, Y. Bu, C. Wang, C. Ma, and H. Liu. 2019. “Delaying the hydration of portland cement by sodium silicate: Setting time and retarding mechanism.” Constr. Build. Mater 205 (Apr): 543–548. https://doi.org/10.1016/j.conbuildmat.2019.02.041.
He, Y., Q. S. Chen, C. C. Qi, Q. L. Zhang, and C. C. Xiao. 2019a. “Lithium slag and fly ash-based binder for cemented fine tailings backfill.” J. Environ. Manage. 248 (Oct): 109282. https://doi.org/10.1016/j.jenvman.2019.109282.
He, Y., S. H. Liu, R. D. Hooton, X. Zhang, and S. He. 2022. “Effects of TEA on rheological property and hydration performance of lithium slag-cement composite binder.” Constr. Build. Mater. 318 (Feb): 125757. https://doi.org/10.1016/j.conbuildmat.2021.125757.
He, Y., S. H. Liu, Q. Luo, W. B. Liu, and M. F. Xu. 2021a. “Influence of PCE-type GA on cement hydration performances.” Constr. Build. Mater. 302 (Oct): 124432. https://doi.org/10.1016/j.conbuildmat.2021.124432.
He, Y., G. Zhang, S. He, S. Liu, and M. Jiang. 2023. “Effect of C-S-H-PCE and TEA on performances of lithium slag-cement binder.” J. Build. Eng. 78 (Nov): 107659. https://doi.org/10.1016/j.jobe.2023.107659.
He, Y., Q. L. Zhang, Q. S. Chen, J. W. Bian, C. C. Qi, Q. Kang, and Y. Feng. 2021b. “Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder.” Constr. Build. Mater. 271 (Feb): 121567. https://doi.org/10.1016/j.conbuildmat.2020.121567.
He, Y., X. Zhang, and R. D. Hooton. 2017a. “Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste.” Constr. Build. Mater. 132 (Mar): 112–123. https://doi.org/10.1016/j.conbuildmat.2016.11.122.
He, Y., X. Zhang, R. D. Hooton, Y. Wang, Y. Kong, X. Wang, and H. Wang. 2020a. “Influence of PCE on rheological and hydration performances of cement paste.” J. Mater. Civ. Eng. 32 (3): 04020002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002924.
He, Y., X. Zhang, T. Ji, and L. L. Shui. 2019b. “Effect of carboxylic density on sulfate sensitivity of polycarboxylate superplasticizers.” KSCE J. Civ. Eng. 23 (May): 5163–5172. https://doi.org/10.1007/s12205-019-2283-4.
He, Y., X. Zhang, Y. N. Kong, X. F. Wang, L. L. Shui, and H. R. Wang. 2018a. “Influence of polycarboxylate superplasticizer on rheological behavior in cement paste.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 33 (Aug): 932–937. https://doi.org/10.1007/s11595-018-1915-8.
He, Y., X. Zhang, S. H. Liu, R. D. Hooton, T. Ji, and Y. N. Kong. 2020b. “Impacts of sulphates on rheological property and hydration performance of cement paste in the function of polycarboxylate superplasticizer.” Constr. Build. Mater. 256 (Sep): 119428. https://doi.org/10.1016/j.conbuildmat.2020.119428.
He, Y., X. Zhang, L. Shui, Y. Wang, and M. Gu. 2019c. “Effects of PCEs with various carboxylic densities and functional groups on the fluidity and hydration performances of cement paste.” Constr. Build. Mater. 202 (Feb): 656–668. https://doi.org/10.1016/j.conbuildmat.2018.12.216.
He, Z. H., S. G. Du, and D. Chen. 2018b. “Microstructure of ultra high performance concrete containing lithium slag.” J. Hazard. Mater. 353 (May): 35–43. https://doi.org/10.1016/j.jhazmat.2018.03.063.
He, Z. H., L. Y. Li, and S. G. Du. 2017b. “Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag.” Constr. Build. Mater. 147 (Feb): 296–304. https://doi.org/10.1016/j.conbuildmat.2017.04.166.
Herath, C., C. Gunasekara, D. W. Law, and S. Setunge. 2021. “Long term creep and shrinkage of nano silica modified high volume fly ash concrete.” J. Sustainable Cem.-Based Mater. 11 (3): 202–222. https://doi.org/10.1080/21650373.2021.1913660.
Hubler, M. H., J. J. Thomas, and H. M. Jennings. 2011. “Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste.” Cem. Concr. Res. 41 (Mar): 842–846. https://doi.org/10.1016/j.cemconres.2011.04.002.
Kanchanason, V., and J. Plank. 2017. “Role of pH on the structure, composition and morphology of C-S-H-PCE nanocomposites and their effect on early strength development of portland cement.” Cem. Concr. Res. 102 (May): 90–98. https://doi.org/10.1016/j.cemconres.2017.09.002.
Kanchanason, V., and J. Plank. 2018. “Effectiveness of a calcium silicate hydrate-polycarboxylate ether (C-S-H-PCE) nanocomposite on early strength development of fly ash cement.” Constr. Build. Mater. 169 (May): 20–27. https://doi.org/10.1016/j.conbuildmat.2018.01.053.
Kanchanason, V., and J. Plank. 2019. “Effect of calcium silicate hydrate-polycarboxylate ether (C-S-H PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements.” Cem. Concr. Res. 119 (Mar): 44–50. https://doi.org/10.1016/j.cemconres.2019.01.007.
Kong, F. R., L. S. Pan, C. M. Wang, D. L. Zhang, and N. Xu. 2016. “Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste.” Constr. Build. Mater. 105 (Feb): 545–553. https://doi.org/10.1016/j.conbuildmat.2015.12.178.
Kong, X. M., Y. R. Zhang, and S. S. Hou. 2013. “Study on the rheological properties of portland cement pastes with polycarboxylate superplasticizers.” Rheol. Acta 52 (Mar): 707–718. https://doi.org/10.1007/s00397-013-0713-7.
Kunchariyakun, K., S. Sinyoung, S. Asavapisit, and K. J. D. MacKenzie. 2022. “Comparative study on the preparation of belite cement from nano-silicas extracted from different agricultural wastes with calcium carbide residue.” J. Sustainable Cem.-Based Mater. 12 (2): 129–140. https://doi.org/10.1080/21650373.2021.2025164.
Li, B. L., R. L. Cao, N. Q. You, C. Chen, and Y. M. Zhang. 2019. “Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution.” Constr. Build. Mater. 220 (Feb): 596–606. https://doi.org/10.1016/j.conbuildmat.2019.06.062.
Li, H. X., Z. Xue, G. W. Liang, K. Wu, B. Q. Dong, and W. S. Wang. 2021. “Effect of C-S-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste.” Constr. Build. Mater. 266 (Jan): 121096. https://doi.org/10.1016/j.conbuildmat.2020.121096.
Li, J. Z., and S. W. Huang. 2020. “Recycling of lithium slag as a green admixture for white reactive powder concrete.” J. Mater. Cycles Waste Manage. 22 (May): 1818–1827. https://doi.org/10.1007/s10163-020-01069-4.
Liang, G., D. Ni, H. Li, B. Dong, and Z. Yang. 2021. “Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of portland cement paste at early age.” Constr. Build. Mater. 272 (Feb): 121891. https://doi.org/10.1016/j.conbuildmat.2020.121891.
Liu, M., H. B. Tan, and X. Y. He. 2019a. “Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system.” Constr. Build. Mater. 194 (Feb): 350–359. https://doi.org/10.1016/j.conbuildmat.2018.10.214.
Liu, Z., J. X. Wang, Q. K. Jiang, G. D. Cheng, L. Li, Y. X. Kang, and D. M. Wang. 2019b. “A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag.” J. Cleaner Prod. 225 (May): 1184–1193. https://doi.org/10.1016/j.jclepro.2019.04.018.
Liu, Z., J. X. Wang, L. Li, and D. M. Wang. 2019c. “Characteristics of alkali-activated lithium slag at early reaction age.” J. Mater. Civ. Eng. 31 (12): 04019312. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002970.
Lu, J. H., Z. X. Yu, Y. Z. Zhu, S. W. Huang, Q. Luo, and S. Y. Zhang. 2019. “Effect of lithium-slag in the performance of slag cement mortar based on least-squares support vector machine prediction.” Materials 12 (10): 1652. https://doi.org/10.3390/ma12101652.
Luo, Z. Y., W. G. Li, V. W. Y. Tam, J. Z. Xiao, and S. P. Shah. 2019. “Current progress on nanotechnology application in recycled aggregate concrete.” J. Sustainable Cem.-Based Mater. 8 (Apr): 79–96. https://doi.org/10.1080/21650373.2018.1519644.
Nguyen, H. A., T. P. Chang, and A. Thymotie. 2020. “Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate.” Constr. Build. Mater. 230 (Jan): 117013. https://doi.org/10.1016/j.conbuildmat.2019.117013.
Nicoleau, L. 2011. “Accelerated growth of calcium silicate hydrates: Experiments and simulations.” Cem. Concr. Res. 41 (May): 1339–1348. https://doi.org/10.1016/j.cemconres.2011.04.012.
Qi, S., T. Wang, S. Fan, J. Ma, Y. Yang, Z. Han, M. Qiao, and Q. Ran. 2018. “Dispersion ability, adsorption and retardation effects of phosphonated small molecule superplasticizers.” Adv. Cem. Res. 31 (9): 399–410. https://doi.org/10.1680/jadcr.18.00009.
Rakhimova, N. R., R. Z. Rakhimov, V. P. Morozov, L. I. Potapova, and Y. N. Osin. 2017. “Mechanism of solidification of simulated borate liquid wastes with sodium silicate activated slag cements.” J. Cleaner Prod. 149 (Feb): 60–69. https://doi.org/10.1016/j.jclepro.2017.02.066.
Ran, Q. P., P. Somasundaran, C. W. Miao, J. P. Liu, S. S. Wu, and J. Shen. 2009. “Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions.” J. Colloid Interface Sci. 336 (2): 624–633. https://doi.org/10.1016/j.jcis.2009.04.057.
Roy, S., S. Chanda, S. K. Bandopadhyay, and S. N. Ghosh. 1998. “Investigation of portland slag cement activated by waterglass.” Cem. Concr. Res. 28 (7): 1049–1056. https://doi.org/10.1016/S0008-8846(98)00069-6.
Santana-Carrillo, J. L., D. E. Ortega-Zavala, andO. Burciaga-Díaz. 2021. “Modified blended limestone-Portland cement binders: Evaluation of 4 different sodium silicates.” Cem. Concr. Compos. 118 (Apr): 103935. https://doi.org/10.1016/j.cemconcomp.2021.103935.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of portland cement.” Cem. Concr. Res. 78 (Dec): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Shah, S. F. A., B. Chen, M. R. Ahmad, and M. A. Haque. 2021. “Development of cleaner one-part geopolymer from lithium slag.” J. Cleaner Prod. 291 (Apr): 125241. https://doi.org/10.1016/j.jclepro.2020.125241.
Shin, J. Y., J. S. Hong, J. K. Suh, and Y. S. Lee. 2008. “Effects of polycarboxylate-type superplasticizer on fluidity and hydration behavior of cement paste.” Korean J. Chem. Eng. 25 (Nov): 1553–1561. https://doi.org/10.1007/s11814-008-0255-3.
Sun, J. F., H. N. Dong, J. J. Wu, J. J. Jiang, W. F. Li, X. D. Shen, and G. H. Hou. 2021. “Properties evolution of cement-metakaolin system with C-S-H/PCE nanocomposites.” Constr. Build. Mater. 282 (May): 122707. https://doi.org/10.1016/j.conbuildmat.2021.122707.
Tan, H., M. Li, X. He, Y. Su, J. Yang, and H. Zhao. 2021. “Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system.” Constr. Build. Mater 267 (Jan): 120465. https://doi.org/10.1016/j.conbuildmat.2020.120465.
Tan, H. B., M. G. Li, X. Y. He, Y. Su, J. J. Zhang, H. Pan, J. Yang, and Y. B. Wang. 2020. “Preparation for micro-lithium slag via wet grinding and its application as accelerator in portland cement.” J. Cleaner Prod. 250 (Jun): 119528. https://doi.org/10.1016/j.jclepro.2019.119528.
Tan, H. B., X. G. Li, C. He, B. G. Ma, Y. Bai, and Z. T. Luo. 2015. “Utilization of lithium slag as an admixture in blended cements: Physico-mechanical and hydration characteristics.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (May): 129–133. https://doi.org/10.1007/s11595-015-1113-x.
Tan, H. B., X. Zhang, X. Y. He, Y. L. Guo, X. F. Deng, Y. Su, J. Yang, and Y. B. Wang. 2018. “Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste.” J. Cleaner Prod. 205 (Dec): 536–551. https://doi.org/10.1016/j.jclepro.2018.09.027.
Thomas, J. J., H. M. Jennings, and J. J. Chen. 2009. “Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement.” J. Phys. Chem. C 113 (May): 4327–4334. https://doi.org/10.1021/jp809811w.
Uppalapati, S., L. Vandewalle, and Ö. Cizer. 2020. “Autogenous shrinkage of slag-fly ash blends activated with hybrid sodium silicate and sodium sulfate at different curing temperatures.” Constr. Build. Mater 265 (Dec): 121276. https://doi.org/10.1016/j.conbuildmat.2020.121276.
Wang, J. X., L. Han, Z. Liu, and D. M. Wang. 2020. “Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties.” Cem. Concr. Compos. 110 (Jul): 103598. https://doi.org/10.1016/j.cemconcomp.2020.103598.
Wang, W. C. 2014. “Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens.” Constr. Build. Mater. 50 (Jan): 727–735. https://doi.org/10.1016/j.conbuildmat.2013.10.024.
Wang, Y. R., D. M. Wang, Y. Cui, D. P. Zheng, and Z. Liu. 2019. “Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process.” Constr. Build. Mater. 203 (Mar): 304–313. https://doi.org/10.1016/j.conbuildmat.2019.01.099.
Wu, F. F., K. B. Shi, and S. K. Dong. 2014. “Properties and microstructure of HPC with lithium-slag and fly ash.” Key Eng. Mater. 599 (May): 70–73. https://doi.org/10.4028/www.scientific.net/KEM.599.70.
Xu, C., H. X. Li, X. J. Yang, B. Q. Dong, and W. S. Wang. 2021. “Action of the combined presence of C-S-Hs-PCE and triethanolamine on the performances of cement paste/mortar.” Constr. Build. Mater. 269 (Feb): 121345. https://doi.org/10.1016/j.conbuildmat.2020.121345.
Xue, Q. Z., C. X. Ni, Q. Y. Wu, Z. Q. Yu, and X. D. Shen. 2021. “Effects of nano-CSH on the hydration process and mechanical property of cementitious materials.” J. Sustainable Cem.-Based Mater. 11 (6): 378–388. https://doi.org/10.1080/21650373.2021.1972487.
Yan, H., G. Zhang, S. He, S. Liu, and M. Jiang. 2023. “Effect of C-S-H-PCE and TEA on performances of lithium slag-cement binder.” J. Build. Eng. 78 (Nov): 107659. https://doi.org/10.1016/j.jobe.2023.107659.
Yan, Q. X., X. H. Li, Z. X. Wang, X. F. Wu, J. X. Wang, H. J. Guo, Q. Y. Hu, and W. J. Peng. 2012. “Extraction of lithium from lepidolite by sulfation roasting and water leaching.” Int. J. Miner. Process. 110 (Mar): 1–5. https://doi.org/10.1016/j.minpro.2012.03.005.
Zeidan, M., M. T. Bassuoni, and A. Said. 2017. “Physical salt attack on concrete incorporating nano-silica.” J. Sustainable Cem.-Based Mater. 6 (3): 195–216. https://doi.org/10.1080/21650373.2016.1218802.
Zeidan, M., and A. M. Said. 2017. “Effect of colloidal nano-silica on alkali-silica mitigation.” J. Sustainable Cem.-Based Mater. 6 (2): 126–138. https://doi.org/10.1080/21650373.2016.1191387.
Zhai, M., J. Zhao, D. Wang, Y. Wang, and Q. Wang. 2021. “Hydration properties and kinetic characteristics of blended cement containing lithium slag powder.” J. Build. Eng. 39 (Jul): 102287. https://doi.org/10.1016/j.jobe.2021.102287.
Zhang, J. L., Z. M. Wang, Y. H. Yao, R. F. Tang, S. T. Li, X. Liu, and D. W. Sun. 2021. “The effect and mechanism of C–S–H-PCE nanocomposites on the early strength of mortar under different water-to-cement ratio.” J. Build. Eng. 44 (Dec): 103360. https://doi.org/10.1016/j.jobe.2021.103360.
Zhang, T., B. G. Ma, H. B. Tan, X. H. Liu, P. Chen, and Z. T. Luo. 2020. “Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system.” J. Environ. Manage. 276 (Dec): 111274. https://doi.org/10.1016/j.jenvman.2020.111274.
Zhang, X. W., C. X. Lu, and J. Y. Shen. 2016. “Influence of tartaric acid on early hydration and mortar performance of portland cement-calcium aluminate cement-anhydrite binder.” Constr. Build. Mater. 112 (Jun): 877–884. https://doi.org/10.1016/j.conbuildmat.2016.02.214.
Zhang, X. Z., X. H. Du, X. Y. Zhao, R. Zhang, P. K. Hou, Z. H. Zhou, and X. Cheng. 2017. “The synergistic effect of nano-SiO2 with silica fume in cement-based material.” J. Sustainable Cem.-Based Mater. 6 (4): 267–279. https://doi.org/10.1080/21650373.2016.1262799.
Zhang, Y., and X. Kong. 2015. “Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes.” Cem. Concr. Res. 69 (Feb): 1–9. https://doi.org/10.1016/j.cemconres.2014.11.009.
Zhang, Y. J., P. Yu, F. Pan, and Y. He. 2018. “The synergistic effect of AFt enhancement and expansion in portland cement-aluminate cement-FGD gypsum composite cementitious system.” Constr. Build. Mater. 190 (Nov): 985–994. https://doi.org/10.1016/j.conbuildmat.2018.09.139.
Zou, F. B., H. B. Tan, X. Y. He, B. G. Ma, X. F. Deng, T. Zhang, J. P. Mei, X. H. Liu, and H. H. Qi. 2018. “Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste.” Constr. Build. Mater. 192 (Dec): 836–845. https://doi.org/10.1016/j.conbuildmat.2018.10.087.
Zou, F. B., M. Zhang, C. L. Hu, F. Z. Wang, and S. G. Hu. 2021. “Novel C-A-S-H/PCE nanocomposites: Design, characterization and the effect on cement hydration.” Chem. Eng. J. 412 (May): 128569. https://doi.org/10.1016/j.cej.2021.128569.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 5May 2024

History

Received: Sep 10, 2022
Accepted: Oct 27, 2023
Published online: Feb 24, 2024
Published in print: May 1, 2024
Discussion open until: Jul 24, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Yan He, Ph.D. [email protected]
Associate Professor, School of Civil Engineering, Suzhou Univ. of Science and Technology, Suzhou 215011, China; Associate Professor, Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, China (corresponding author). Email: [email protected]
Mingjing Jiang, Ph.D. [email protected]
Professor, School of Civil Engineering, Suzhou Univ. of Science and Technology, Suzhou 215011, China. Email: [email protected]
Professor, State Key Laboratory of Water Resources, Wuhan Univ., Wuhan 430072, China. ORCID: https://orcid.org/0000-0002-8333-1045. Email: [email protected]
Junan Shen, Ph.D. [email protected]
Professor, Jiangsu Technology Industrialization and Research Center of Ecological Road Engineering, Suzhou 215011, China. Email: [email protected]
R. D. Hooton, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Univ. of Toronto, Toronto, ON, Canada M5S1A4. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share