Technical Papers
Sep 4, 2023

Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 11

Abstract

This experimental research investigates the influence of geopolymerization factors such as Na2O dosages, water and mineral admixture [bentonite (BT), burnt lime (BL), and ground granulated blast furnace slag (GGBS)] on physiomechanical properties of the pelletized fly ash (FA)–based aggregates. Taguchi’s L9 orthogonal array was adopted to design the mixing ratios for three kinds of fly ash–based aggregates (in the combinations of FA-BT, FA-BL, and FA-GGBS). The degree of geopolymerization of the produced aggregates was characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM). Most influential response indices in the production of pelletized aggregates were identified using gray relational analysis. The physiomechanical characteristics of the fly-ash aggregates were significantly improved by admixing BL than that of GGBS and BT. However, pelletization efficiency was seen to be superior for GGBS-substituted fly-ash aggregates. The quantified amount of hydration products, i.e., sodium alumino-silicate hydrate (N-A-S-H)/calcium alumino-silicate hydrate (C-A-S-H) for fly ash–based aggregates intensified on increasing Na2O and mineral admixture dosages. The results strongly suggest the existence of a linear relationship between the quantified amount of N-A-S-H/C-A-S-H and individual pellet strength of produced aggregate. The FTIR spectrum showed strong and broadened bands of Si-O terminal for all types of aggregates, representing the conversion of unreacted minerals to chains of aluminosilicate gel (geopolymerized hydration product). Further, it can also be inferred from gray relational analysis that among all other factors, Na2O content significantly impacted the engineering properties of produced fly ash–based aggregates.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the financial support received from the Department of Science and Technology, Government of India, for completing this research.

References

Abdullah, A., M. M. A. B. Abdullah, K. Hussin, Z. Yahya, R. Ahmad, and R. A. Razak. 2020. “Aggregate impact value (AIV) of fly ash geopolymer artificial aggregate at different sodium hydroxide (NaOH) concentration.” AIP Conf. Proc. 2291 (1): 020043. https://doi.org/10.1063/5.0027050.
Abdullah, M., L. Y. Ming, H. C. Yong, and M. F. M. Tahir. 2018. Cement based materials. London: InTechOpen.
Abdul Rahim, R. H., K. A. Azizli, Z. Man, T. Rahmiati, and L. Ismail. 2014. “Effect of solid to liquid ratio on the mechanical and physical properties of fly ash geopolymer without sodium silicate.” Appl. Mech. Mater. 625 (Sep): 46–49. https://doi.org/10.4028/www.scientific.net/AMM.625.46.
Adesanya, E., K. Ohenoja, T. Luukkonen, P. Kinnunen, and M. Illikainen. 2018. “One-part geopolymer cement from slag and pretreated paper sludge.” J. Cleaner Prod. 185 (Jun): 168–175. https://doi.org/10.1016/j.jclepro.2018.03.007.
Adriano, A., G. Soriano, and J. Duque. 2013. “Characterization of water absorption and desorption properties of natural zeolites in Ecuador.” In Proc., 5th Int. Symp. Energy, 1–9. Canton, MI: Materials Science.
Ayati, B., V. Ferrándiz-Mas, D. Newport, and C. Cheeseman. 2018. “Use of clay in the manufacture of lightweight aggregate.” Constr. Build. Mater. 162 (Feb): 124–131. https://doi.org/10.1016/j.conbuildmat.2017.12.018.
Baykal, G., and A. G. Döven. 2000. “Utilization of fly ash by pelletization process; theory, application areas and research results.” Resour. Conserv. Recycl. 30 (1): 59–77. https://doi.org/10.1016/S0921-3449(00)00042-2.
Bernal, S. A., J. L. Provis, V. Rose, and R. M. De Gutierrez. 2011. “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends.” Cem. Concr. Compos. 33 (1): 46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004.
Bhuva, P., and A. Bhogayata. 2022. “A review on the application of artificial intelligence in the mix design optimization and development of self-compacting concrete.” Mater. Today Proc. 65 (Aug): 603–608. https://doi.org/10.1016/j.matpr.2022.03.194.
Bijen, J. M. J. M. 1986. “Manufacturing processes of artificial lightweight aggregates from fly ash.” Int. J. Cem. Compos. Lightweight Concr. 8 (3): 191–199. https://doi.org/10.1016/0262-5075(86)90040-0.
BIS (Bureau of Indian Standards). 2002. Methods of test for aggregates for concrete, part 4: Mechanical properties. IS:2386 (Part IV)-1963. New Delhi, India: BIS.
Brinkman, L., and S. A. Miller. 2021. “Environmental impacts and environmental justice implications of supplementary cementitious materials for use in concrete.” Environ. Res.: Infrastruct. Sustainability 1 (2): 25003. https://doi.org/10.1088/2634-4505/ac0e86.
Bui, L. A., C. Hwang, C. Chen, K. Lin, and M. Hsieh. 2012a. “Manufacture and performance of cold bonded lightweight aggregate using alkaline activators for high performance concrete.” Constr. Build. Mater. 35 (Oct): 1056–1062. https://doi.org/10.1016/j.conbuildmat.2012.04.032.
Bui, L. A. T., C. L. Hwang, C. T. Chen, and M. Y. Hsieh. 2012b. “Characteristics of cold-bonded lightweight aggregate produced with different mineral admixtures.” Appl. Mech. Mater. 174 (May): 978–983. https://doi.org/10.4028/www.scientific.net/AMM.174-177.978.
Caillère, S., S. Hénin, and M. Rautureau. 1982. Minéralogie des argiles: Structure et propriétés physico-chimiques. Paris: Masson.
Cavazzuti, M. 2013. “Design of experiments.” In Optimization methods: From theory to design scientific and technological aspects in mechanics, 13–42. Berlin: Springer.
Chi, J. M., R. Huang, C.-C. Yang, and J. J. Chang. 2003. “Effect of aggregate properties on the strength and stiffness of lightweight concrete.” Cem. Concr. Compos. 25 (2): 197–205. https://doi.org/10.1016/S0958-9465(02)00020-3.
Chindaprasirt, P., P. De Silva, K. Sagoe-Crentsil, and S. Hanjitsuwan. 2012. “Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems.” J. Mater. Sci. 47 (12): 4876–4883. https://doi.org/10.1007/s10853-012-6353-y.
Coates, J. P. 1977. The IR analysis of quartz and asbestos. Chesham, UK: Nelioth Offset.
Colangelo, F., R. Cioffi, F. Montagnaro, and L. Santoro. 2012. “Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material.” Waste Manage. 32 (6): 1179–1185. https://doi.org/10.1016/j.wasman.2011.12.013.
Cornejo, M. H., J. Elsen, B. Togra, H. Baykara, G. Soriano, and C. Paredes. 2018. “Effect of calcium hydroxide and water to solid ratio on compressive strength of mordenite-based geopolymer and the evaluation of its thermal transmission property.” In Proc., ASME Int. Mechanical Engineering Congress and Exposition, V012T11A022. New York: ASME.
Dave, S. V., A. Bhogayata, and N. K. Arora. 2021. “Mix design optimization for fresh, strength and durability properties of ambient cured alkali activated composite by Taguchi method.” Constr. Build. Mater. 284 (May): 122822. https://doi.org/10.1016/j.conbuildmat.2021.122822.
Davidovits, J. 1989. “Geopolymers and geopolymeric materials.” J. Therm. Anal. 35 (2): 429–441. https://doi.org/10.1007/BF01904446.
DIN (Deutsches Insitut fur Normung E.V.). 2015. Leichte gesteinskörnungen. DIN EN 13055: 2015-11. Berlin: Dtsch. und Englische Fassung FprEN.
Dixon, J. B., S. B. Weed, and R. C. Dinauer. 1977. Minerals in soil environments. Madison, WI: Soil Science Society of America.
Everaert, C., M. Luypaert, J. L. V. Maag, Q. X. Cheng, M. E. Dinger, J. Hellemans, and P. Mestdagh. 2017. “Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data.” Sci. Rep. 7 (1): 1–11. https://doi.org/10.1038/s41598-017-01617-3.
Fan, D., R. Yu, S. Fu, L. Yue, C. Wu, Z. Shui, K. Liu, Q. Song, M. Sun, and C. Jiang. 2021. “Precise design and characteristics prediction of ultra-high performance concrete (UHPC) based on artificial intelligence techniques.” Cem. Concr. Compos. 122 (Sep): 104171. https://doi.org/10.1016/j.cemconcomp.2021.104171.
Fernández-Jiménez, A., and A. Palomo. 2005. “Composition and microstructure of alkali activated fly ash binder: Effect of the activator.” Cem. Concr. Res. 35 (10): 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003.
Franus, M., D. Barnat-Hunek, and M. Wdowin. 2016. “Utilization of sewage sludge in the manufacture of lightweight aggregate.” Environ. Monit. Assess. 188 (1): 1–13. https://doi.org/10.1007/s10661-015-5010-8.
Freedonia Group. 2016. The Freedonia Group: World construction aggregates to reach 51.7 billion metric tons. Cleveland: Freedonia Group.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015. “Properties of alkali activated slag–fly ash blends with limestone addition.” Cem. Concr. Compos. 59 (May): 119–128. https://doi.org/10.1016/j.cemconcomp.2015.01.007.
Garg, N., V. O. Özçelik, J. Skibsted, and C. E. White. 2019. “Nanoscale ordering and depolymerization of calcium silicate hydrates in the presence of alkalis.” J. Phys. Chem. C 123 (40): 24873–24883. https://doi.org/10.1021/acs.jpcc.9b06412.
Geetha, S., and K. Ramamurthy. 2010a. “Environmental friendly technology of cold-bonded bottom ash aggregate manufacture through chemical activation.” J. Cleaner Prod. 18 (15): 1563–1569. https://doi.org/10.1016/j.jclepro.2010.06.006.
Geetha, S., and K. Ramamurthy. 2010b. “Reuse potential of low-calcium bottom ash as aggregate through pelletization.” Waste Manage. 30 (8–9): 1528–1535. https://doi.org/10.1016/j.wasman.2010.03.027.
Geetha, S., and K. Ramamurthy. 2011. “Properties of sintered low calcium bottom ash aggregate with clay binders.” Constr. Build. Mater. 25 (4): 2002–2013. https://doi.org/10.1016/j.conbuildmat.2010.11.051.
Geetha, S., and K. Ramamurthy. 2013. “Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature.” Cem. Concr. Compos. 43 (Oct): 20–30. https://doi.org/10.1016/j.cemconcomp.2013.06.007.
Gesoğlu, M., E. Güneyisi, and H. Ö. Öz. 2012. “Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag.” Mater. Struct. 45 (10): 1535–1546. https://doi.org/10.1617/s11527-012-9855-9.
Golafshani, E. M., M. Arashpour, and A. Kashani. 2021. “Green mix design of rubbercrete using machine learning-based ensemble model and constrained multi-objective optimization.” J. Cleaner Prod. 327 (Dec): 129518. https://doi.org/10.1016/j.jclepro.2021.129518.
Gomathi, P., and A. Sivakumar. 2012. “Characterization on the strength properties of pelletized fly ash aggregate.” ARPN J. Eng. Appl. Sci. 7 (11): 1523–1532.
Gomathi, P., and A. Sivakumar. 2014. “Fly ash based lightweight aggregates incorporating clay binders.” Indian J. Eng. Mater. Sci. 21 (2): 227–232.
Gomathi, P., and A. Sivakumar. 2015. “Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete.” Constr. Build. Mater. 77 (Feb): 276–287. https://doi.org/10.1016/j.conbuildmat.2014.12.108.
Görhan, G., and G. Kürklü. 2014. “The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures.” Composites, Part B 58 (Mar): 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082.
Gupta, S., B. N. Mohapatra, and M. Bansal. 2020. “A review on development of portland limestone cement: A step towards low carbon economy for Indian cement industry.” Curr. Res. Green Sustainable Chem. 3 (Jun): 100019. https://doi.org/10.1016/j.crgsc.2020.100019.
Hardjito, D., C. C. Cheak, and C. H. L. Ing. 2008. “Strength and setting times of low calcium fly ash-based geopolymer mortar.” Mod. Appl. Sci. 2 (4): 3–11. https://doi.org/10.5539/mas.v2n4p3.
Hardjito, D., and B. V. Rangan. 2005. Development and properties of low-calcium fly ash-based geopolymer concrete. Perth, Australia: Curtin Univ. of Technology.
Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2004. “On the development of fly ash-based geopolymer concrete.” Mater. J. 101 (6): 467–472. https://doi.org/10.14359/13485.
Harikrishnan, K. I., and K. Ramamurthy. 2006. “Influence of pelletization process on the properties of fly ash aggregates.” Waste Manage. 26 (8): 846–852. https://doi.org/10.1016/j.wasman.2005.10.012.
Hlavay, J., K. Jonas, S. Elek, and J. Inczedy. 1978. “Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods—II. Investigations on quartz and feldspar.” Clays Clay Miner. 26 (2): 139–143. https://doi.org/10.1346/CCMN.1978.0260209.
Holm, T. A., and J. P. Ries. 2006. “Lightweight concrete and aggregates.” In Significance of tests and properties of concrete and concrete-making materials. Philadelphia: ASTM.
Hwang, C.-L., and V.-A. Tran. 2015. “A study of the properties of foamed lightweight aggregate for self-consolidating concrete.” Constr. Build. Mater. 87 (Jul): 78–85. https://doi.org/10.1016/j.conbuildmat.2015.03.108.
IS (Indian Standard). 2003. Pulverized fuel ash—Specification. Part 1: For use as pozzolana in cement, cement mortar and concrete (second revision). IS: 3812 (Part-1). New Delhi, India: Bureau of Indian Standards.
IS (Indian Standard). 2016. Indian standard coarse and fine aggregate for concrete- specification. IS:383-2016. New Delhi, India: Bureau of Indian Standards.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Joshaghani, A., A. A. Ramezanianpour, O. Ataei, and A. Golroo. 2015. “Optimizing pervious concrete pavement mixture design by using the Taguchi method.” Constr. Build. Mater. 101 (Dec): 317–325. https://doi.org/10.1016/j.conbuildmat.2015.10.094.
Khale, D., and R. Chaudhary. 2007. “Mechanism of geopolymerization and factors influencing its development: A review.” J. Mater. Sci. 42 (3): 729–746. https://doi.org/10.1007/s10853-006-0401-4.
Kockal, N. U., and T. Ozturan. 2011. “Characteristics of lightweight fly ash aggregates produced with different binders and heat treatments.” Cem. Concr. Compos. 33 (1): 61–67. https://doi.org/10.1016/j.cemconcomp.2010.09.007.
Komljenović, M., Z. Baščarević, and V. Bradić. 2010. “Mechanical and microstructural properties of alkali-activated fly ash geopolymers.” J. Hazard. Mater. 181 (1–3): 35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064.
Krishnan, T., and R. Purushothaman. 2017. “Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: Using full factorial design approach.” IOP Conf. Ser.: Earth Environ. Sci. 80 (1): 012013. https://doi.org/10.1088/1755-1315/80/1/012013.
Lee, W. K. W., and J. S. J. Van Deventer. 2002. “Structural reorganisation of class F fly ash in alkaline silicate solutions.” Colloids Surf., A 211 (1): 49–66. https://doi.org/10.1016/S0927-7757(02)00237-6.
Lo, T. Y., H. Cui, S. A. Memon, and T. Noguchi. 2016. “Manufacturing of sintered lightweight aggregate using high-carbon fly ash and its effect on the mechanical properties and microstructure of concrete.” J. Cleaner Prod. 112 (Jan): 753–762. https://doi.org/10.1016/j.jclepro.2015.07.001.
Longhi, M. A., Z. Zhang, E. D. Rodríguez, A. P. Kirchheim, and H. Wang. 2019. “Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: A critical analysis.” Front. Mater. 6 (Apr): 89. https://doi.org/10.3389/fmats.2019.00089.
Mahjoubi, S., R. Barhemat, W. Meng, and Y. Bao. 2023. “AI-guided auto-discovery of low-carbon cost-effective ultra-high performance concrete (UHPC).” Resour. Conserv. Recycl. 189 (Feb): 106741. https://doi.org/10.1016/j.resconrec.2022.106741.
Manikandan, R., and K. Ramamurthy. 2007. “Influence of fineness of fly ash on the aggregate pelletization process.” Cem. Concr. Compos. 29 (6): 456–464. https://doi.org/10.1016/j.cemconcomp.2007.01.002.
Manikandan, R., and K. Ramamurthy. 2008. “Effect of curing method on characteristics of cold bonded fly ash aggregates.” Cem. Concr. Compos. 30 (9): 848–853. https://doi.org/10.1016/j.cemconcomp.2008.06.006.
Manikandan, R., and K. Ramamurthy. 2009. “Swelling characteristic of bentonite on pelletization and properties of fly ash aggregates.” J. Mater. Civ. Eng. 21 (10): 578–586. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(578).
Mannan, M. A., and K. Neglo. 2010. “Mix design for oil-palm-boiler clinker (OPBC) concrete.” J. Sci. Technol. 30 (1): 111–118.
Miller, S. A., P. J. M. Monteiro, C. P. Ostertag, and A. Horvath. 2016. “Concrete mixture proportioning for desired strength and reduced global warming potential.” Constr. Build. Mater. 128 (Dec): 410–421. https://doi.org/10.1016/j.conbuildmat.2016.10.081.
Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: Wiley.
Mustafa Al Bakri, A. M., H. Kamarudin, M. Bnhussain, A. R. Rafiza, and Y. Zarina. 2012. “Effect of Na2 SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer.” ACI Mater. J. 109 (5): 503–508.
Narattha, C., and A. Chaipanich. 2018. “Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates.” J. Cleaner Prod. 171 (Jan): 1094–1100. https://doi.org/10.1016/j.jclepro.2017.09.259.
Nath, P., P. K. Sarker, and V. B. Rangan. 2015. “Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing.” Procedia Eng. 125 (Jan): 601–607. https://doi.org/10.1016/j.proeng.2015.11.077.
Nor, A. M., Z. Yahya, M. M. A. B. Abdullah, R. A. Razak, J. J. Ekaputri, M. A. Faris, and H. N. Hamzah. 2016. “A review on the manufacturing of lightweight aggregates using industrial by-product.” MATEC Web Conf. 78 (Oct): 1067. https://doi.org/10.1051/matecconf/20167801067.
Oktay, H., R. Yumrutaş, and A. Akpolat. 2015. “Mechanical and thermophysical properties of lightweight aggregate concretes.” Constr. Build. Mater. 96 (Oct): 217–225. https://doi.org/10.1016/j.conbuildmat.2015.08.015.
Palomo, Á., E. Kavalerova, A. Fernández-Jiménez, P. Krivenko, I. García-Lodeiro, and O. Maltseva. 2015. A review on alkaline activation: New analytical perspectives. Madrid, Spain: Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC).
Park, J. H., D. J. Min, and H. S. Song. 2002. “Structural investigation of CaO–Al2O3 and CaO–Al2O3–CaF2 slags via Fourier transform infrared spectra.” ISIJ Int. 42 (1): 38–43. https://doi.org/10.2355/isijinternational.42.38.
Park, J. J., S. T. Kang, K. T. Koh, and S. W. Kim. 2008. “Influence of the ingredients on the compressive strength of UHPC as a fundamental study to optimize the mixing proportion.” In Proc., 2nd Int. Symp. Ultra High Perform. Concr., 105–112. Kassel, Germany: Kassel University Press.
Patankar, S. V., Y. M. Ghugal, and S. S. Jamkar. 2014. “Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar.” Indian J. Mater. Sci. 2014 (May): 1–6. https://doi.org/10.1155/2014/938789.
Priyadharshini, P., M. G. Ganesh, and A. S. Santhi. 2011. “Experimental study on cold bonded fly ash aggregates.” Int. J. Civ. Struct. Eng. 2 (2): 493.
Rafeet, A., R. Vinai, M. Soutsos, and W. Sha. 2019. “Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs).” Cem. Concr. Res. 122 (Aug): 118–135. https://doi.org/10.1016/j.cemconres.2019.05.003.
Rahmiati, T., K. A. Azizli, Z. Man, L. Ismail, and M. F. Nuruddin. 2015. “Effect of solid/liquid ratio during curing time fly ash based geopolymer on mechanical property.” Mater. Sci. Forum 803 (Aug): 120–124. https://doi.org/10.4028/www.scientific.net/MSF.803.120.
Ramamurthy, K., and K. I. Harikrishnan. 2006. “Influence of binders on properties of sintered fly ash aggregate.” Cem. Concr. Compos. 28 (1): 33–38. https://doi.org/10.1016/j.cemconcomp.2005.06.005.
Rangan, B. V., D. Hardjito, S. E. Wallah, and D. M. J. Sumajouw. 2005. “Studies on fly ash-based geopolymer concrete.” In Proc., World Congress Geopolymer, 133–137. Saint Quentin, France: Geopolymer Institute.
Rattanasak, U., and P. Chindaprasirt. 2009. “Influence of NaOH solution on the synthesis of fly ash geopolymer.” Miner. Eng. 22 (12): 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022.
Reddy, M. V. S., M. Nataraja, K. Sindhu, V. Harani, and K. Madhuralalasa. 2016. “Performance of light weight concrete using fly ash pellets as coarse aggregate replacement.” Int. J. Eng. Res. Technol. 9 (2): 95–104.
Sadrossadat, E., H. Basarir, A. Karrech, and M. Elchalakani. 2022. “Multi-objective mixture design and optimisation of steel fiber reinforced UHPC using machine learning algorithms and metaheuristics.” Supplement, Eng. Comput. 38 (S3): 2569–2582. https://doi.org/10.1007/s00366-021-01403-w.
Sahoo, S., B. B. Das, and S. Mustakim. 2017. “Acid, alkali, and chloride resistance of concrete composed of low-carbonated fly ash.” J. Mater. Civ. Eng. 29 (3): 4016242. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001759.
Saikia, B. J., G. Parthasarathy, N. C. Sarmah, and G. D. Baruah. 2008. “Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites.” Bull. Mater. Sci. 31 (2): 155–158. https://doi.org/10.1007/s12034-008-0027-z.
Scrivener, K., F. Martirena, S. Bishnoi, and S. Maity. 2018. “Calcined clay limestone cements (LC3).” Cem. Concr. Res. 114 (Dec): 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017.
Shahane, H. A., and S. Patel. 2022. “Influence of design parameters on engineering properties of angular shaped fly ash aggregates.” Constr. Build. Mater. 327 (Apr): 126914. https://doi.org/10.1016/j.conbuildmat.2022.126914.
Sharath, B. P., and B. B. Das. 2021. “Production of artificial aggregates using industrial by-products admixed with mine tailings—A sustainable solution.” In Recent trends in civil engineering, 383–397. Singapore: Springer.
Shivaprasad, K. N., and B. B. Das. 2018. “Determination of optimized geopolymerization factors on the properties of pelletized fly ash aggregates.” Constr. Build. Mater. 163 (Feb): 428–437. https://doi.org/10.1016/j.conbuildmat.2017.12.038.
Shivaprasad, K. N., and B. B. Das. 2021. “Study on the production factors in the process of production and properties of fly ash-based coarse aggregates.” Adv. Civ. Eng. 2021 (Sep): 1–7. https://doi.org/10.1155/2021/4309569.
Somayaji, S. 1985. Civil engineering materials. New Delhi, India: Pearson Education India.
Soudki, K. A., E. F. El-Salakawy, and N. B. Elkum. 2001. “Full factorial optimization of concrete mix design for hot climates.” J. Mater. Civ. Eng. 13 (6): 427–433. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(427).
Sumer, M. 2012. “Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes.” Constr. Build. Mater. 34 (Sep): 531–536. https://doi.org/10.1016/j.conbuildmat.2012.02.023.
Summer, M. E. 1995. Hand book of soil science. Boca Raton, FL: Hondor Press.
Tang, P., M. V. A. Florea, and H. J. H. Brouwers. 2017. “Employing cold bonded pelletization to produce lightweight aggregates from incineration fine bottom ash.” J. Cleaner Prod. 165 (Nov): 1371–1384. https://doi.org/10.1016/j.jclepro.2017.07.234.
Tavares, C., X. Wang, S. Saha, and Z. Grasley. 2022. “Machine learning-based mix design tools to minimize carbon footprint and cost of UHPC. Part 1: Efficient data collection and modeling.” Cleaner Mater. 4 (Jun): 100082. https://doi.org/10.1016/j.clema.2022.100082.
Teichmann, T., and M. Schmidt. 2004. “Influence of the packing density of fine particles on structure, strength and durability of UHPC.” In Proc., Int. Symp. Ultra High Performance Concrete, 313–323. Ames, IA: Iowa State Univ.
Terzić, A., L. Pezo, V. Mitić, and Z. Radojević. 2015. “Artificial fly ash based aggregates properties influence on lightweight concrete performances.” Ceram. Int. 41 (2): 2714–2726. https://doi.org/10.1016/j.ceramint.2014.10.086.
Videla, C., and P. M. Martinez. 2002. “Fly ash lightweight aggregates produced by cold bonding for sustainable concrete construction.” In Proc., Sustainable Concrete Construction: Proc. of the Int. Con.erence Held at the University of Dundee, 363–372. London: Thomas Telford.
Wasserman, R., and A. Bentur. 1997. “Effect of lightweight fly ash aggregate microstructure on the strength of concretes.” Cem. Concr. Res. 27 (4): 525–537. https://doi.org/10.1016/S0008-8846(97)00019-7.
Wille, K., A. E. Naaman, and G. J. Parra-Montesinos. 2011. “Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way.” ACI Mater. J. 108 (1): 34–46.
Wuddivira, M. N., D. A. Robinson, I. Lebron, L. Bréchet, M. Atwell, S. De Caires, M. Oatham, S. B. Jones, H. Abdu, and A. K. Verma. 2012. “Estimation of soil clay content from hygroscopic water content measurements.” Soil Sci. Soc. Am. J. 76 (5): 1529–1535. https://doi.org/10.2136/sssaj2012.0034.
Yang, K.-H., J.-H. Mun, J.-I. Sim, and J.-K. Song. 2011. “Effect of water content on the properties of lightweight alkali-activated slag concrete.” J. Mater. Civ. Eng. 23 (6): 886–894. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000244.
Zhang, Z., H. Wang, J. L. Provis, F. Bullen, A. Reid, and Y. Zhu. 2012. “Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide.” Thermochim. Acta 539 (Jul): 23–33. https://doi.org/10.1016/j.tca.2012.03.021.
Zhao, X., C. Liu, L. Zuo, L. Wang, Q. Zhu, and M. Wang. 2019. “Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers.” Cem. Concr. Compos. 103 (Oct): 279–292. https://doi.org/10.1016/j.cemconcomp.2018.11.019.
Ziolkowski, P., M. Niedostatkiewicz, and S.-B. Kang. 2021. “Model-based adaptive machine learning approach in concrete mix design.” Materials 14 (7): 1661. https://doi.org/10.3390/ma14071661.
Zion. 2019. Global construction aggregates market will reach USD 490 billion by 2025, Feb 2019, Zion market research report. New York: Zion Market Research.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 11November 2023

History

Received: Jul 13, 2022
Accepted: Apr 10, 2023
Published online: Sep 4, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 4, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka 575 025, India. ORCID: https://orcid.org/0000-0002-9121-9061. Email: [email protected]
Kusumadhar Snehal [email protected]
Assistant Professor, Dept. of Civil Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211 004, India. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka 575 025, India (corresponding author). ORCID: https://orcid.org/0000-0002-1245-4494. Email: [email protected]
Salim Barbhuiya [email protected]
Senior Lecturer, Dept. of Engineering and Construction, Univ. of East London, University Way, London E16 2RD, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share