Technical Papers
May 26, 2023

Corrosion Resistance of Calcium Sulfoaluminate Cementitious Systems

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

This study investigated chloride binding and corrosion of carbon steel in calcium sulfoaluminate (CSA) cement concrete exposed to external chloride solutions. CSA pastes and concrete specimens were prepared using three water-to-cement ratios (w/c) (0.4, 0.5, and 0.6) followed by wet and air curing for 55 days. Ordinary portland cement (OPC) paste and concrete specimens also were prepared and analyzed for comparison. The primary hydration product of CSA was ettringite, and its quantity increased with the increase in w/c. Compared with OPC, the CSA pastes had a significantly lower chloride binding capacity and higher porosity, exhibiting poor performance in protecting the steel embedded in the concrete. In general, considering the compressive strength, chloride binding, and corrosion, air-cured CSA concrete performed worse than wet-cured CSA concrete.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was partially supported by the American Concrete Institute Foundation under Award No. CRC 2021-P0042. The authors thank Naga Pavan Vaddey for his assistance in casting concrete specimens.

References

AASHTO. 2020. Standard specification for portland cement. AASHTO M 85. Washington, DC: AASHTO.
Afroughsabet, V., L. Biolzi, P. J. Monteiro, and M. M. Gastaldi. 2021. “Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement.” J. Build. Eng. 43 (Nov): 102656. https://doi.org/10.1016/j.jobe.2021.102656.
Ahmed, A. A., and D. Trejo. 2020. “Assessing standard tests for admixtured chlorides in calcium aluminate and calcium sulfoaluminate cement systems.” ACI Mater. J. 117 (1): 71–84.
Ahmed, A. A., and N. P. Vaddey. 2021. “Reliability of chloride testing results in cementitious systems containing admixed chlorides.” Sustainable Resilient Infrastruct. 1–13. https://doi.org/10.1080/23789689.2021.1917059.
Andac, M., and F. Glasser. 1999. “Pore solution composition of calcium sulfoaluminate cement.” Adv. Cem. Res. 11 (1): 23–26. https://doi.org/10.1680/adcr.1999.11.1.23.
Ansari, W. S., J. Chang, Z. ur Rehman, U. Nawaz, and M. F. Junaid. 2022. “A novel approach to improve carbonation resistance of Calcium Sulfoaluminate cement by assimilating fine cement-sand mix.” Constr. Build. Mater. 317 (Jan): 125598. https://doi.org/10.1016/j.conbuildmat.2021.125598.
ASTM. 2004. Standard test method for acid-soluble chloride in mortar and concrete. ASTM C1152. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for determining effects of chemical admixtures on corrosion of embedded steel reinforcement in concrete exposed to chloride environments. ASTM G109. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard specification for deformed and plain carbon-steel bars for concrete reinforcement. ASTM A615. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM C876. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for water-soluble chloride in mortar and concrete. ASTM C1218. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192. West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard specification for concrete aggregates. ASTM C33. West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard specification for rapid hardening hydraulic cement. ASTM C1600. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM C305. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard specification for portland cement. ASTM C150. West Conshohocken, PA: ASTM.
Beretka, J., M. Marroccoli, N. Sherman, and G. Valenti. 1996. “The influence of C4A3S¯ content and WS ratio on the performance of calcium sulfoaluminate-based cements.” Cem. Concr. Res. 26 (11): 1673–1681. https://doi.org/10.1016/S0008-8846(96)00164-0.
Bernardo, G., A. Telesca, and G. L. Valenti. 2006. “A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages.” Cem. Concr. Res. 36 (6): 1042–1047. https://doi.org/10.1016/j.cemconres.2006.02.014.
Birnin-Yauri, U., and F. Glasser. 1998. “Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding.” Cem. Concr. Res. 28 (12): 1713–1723. https://doi.org/10.1016/S0008-8846(98)00162-8.
Cao, R., J. Yang, G. Li, F. Liu, M. Niu, and W. Wang. 2022. “Resistance of the composite cementitious system of ordinary Portland/calcium sulfoaluminate cement to sulfuric acid attack.” Constr. Build. Mater. 329 (Apr): 127171. https://doi.org/10.1016/j.conbuildmat.2022.127171.
Carsana, M., F. Canonico, and L. Bertolini. 2018. “Corrosion resistance of steel embedded in sulfoaluminate-based binders.” Cem. Concr. Compos. 88 (Apr): 211–219. https://doi.org/10.1016/j.cemconcomp.2018.01.014.
Chen, P., B. Ma, H. Tan, X. Liu, T. Zhang, H. Qi, Y. Peng, Q. Yang, and J. Wang. 2020. “Effects of amorphous aluminum hydroxide on chloride immobilization in cement-based materials.” Constr. Build. Mater. 231 (Jan): 117171. https://doi.org/10.1016/j.conbuildmat.2019.117171.
Chi, L., Z. Wang, S. Lu, H. Wang, K. Liu, and W. Liu. 2021. “Early assessment of hydration and microstructure evolution of belite-calcium sulfoaluminate cement pastes by electrical impedance spectroscopy.” Electrochim. Acta 389 (Sep): 138699. https://doi.org/10.1016/j.electacta.2021.138699.
de Bruyn, K., E. Bescher, C. Ramseyer, S. Hong, and T. H.-K. Kang. 2017. “Pore structure of calcium sulfoaluminate paste and durability of concrete in freeze–thaw environment.” Int. J. Concr. Struct. Mater. 11 (1): 59–68. https://doi.org/10.1007/s40069-016-0174-3.
García-Maté, M., A. G. De la Torre, L. León-Reina, E. R. Losilla, M. A. G. Aranda, and I. Santacruz. 2015. “Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement.” Cem. Concr. Compos. 55 (Jan): 53–61. https://doi.org/10.1016/j.cemconcomp.2014.08.003.
García-Maté, M., I. Santacruz, A. G. A. De la Torre, L. León-Reina, and M. A. G. Aranda. 2012. “Rheological and hydration characterization of calcium sulfoaluminate cement pastes.” Cem. Concr. Compos. 34 (5): 684–691. https://doi.org/10.1016/j.cemconcomp.2012.01.008.
Gastaldi, D., G. Paul, L. Marchese, S. Irico, E. Boccaleri, S. Mutke, L. Buzzi, and F. Canonico. 2016. “Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR.” Cem. Concr. Res. 90 (Dec): 162–173. https://doi.org/10.1016/j.cemconres.2016.05.014.
Gražulis, S., D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail. 2009. “Crystallography Open Database—An open-access collection of crystal structures.” J. Appl. Crystallogr. 42 (4): 726–729. https://doi.org/10.1107/S0021889809016690.
Gražulis, S., A. Merkys, and A. Vaitkus. 2020. “Crystallography open database (COD).” In Handbook of materials modeling: Methods, theory and modeling, 1863–1881. Berlin: Springer.
Hanein, T., J.-L. Galvez-Martos, and M. N. Bannerman. 2018. “Carbon footprint of calcium sulfoaluminate clinker production.” J. Cleaner Prod. 172 (Jan): 2278–2287. https://doi.org/10.1016/j.jclepro.2017.11.183.
Hargis, C. W., B. Lothenbach, C. J. Müller, and F. Winnefeld. 2017. “Carbonation of calcium sulfoaluminate mortars.” Cem. Concr. Compos. 80 (Jul): 123–134. https://doi.org/10.1016/j.cemconcomp.2017.03.003.
Hu, C., D. Hou, and Z. Li. 2017. “Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures.” Cem. Concr. Compos. 80 (Jul): 10–16. https://doi.org/10.1016/j.cemconcomp.2017.02.005.
Janotka, I., and L. Krajči. 1999. “An experimental study on the upgrade of sulfoaluminat–belite cement systems by blending with Portland cement.” Adv. Cem. Res. 11 (1): 35–41. https://doi.org/10.1680/adcr.1999.11.1.35.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Kalogridis, D., G. C. Kostogloudis, C. Ftikos, and C. Malami. 2000. “A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement.” Cem. Concr. Res. 30 (11): 1731–1740. https://doi.org/10.1016/S0008-8846(00)00277-5.
Luping, T., and L.-O. Nilsson. 1993. “Chloride binding capacity and binding isotherms of OPC pastes and mortars.” Cem. Concr. Res. 23 (2): 247–253. https://doi.org/10.1016/0008-8846(93)90089-R.
Moffatt, E. G., and M. D. Thomas. 2018. “Durability of rapid-strength concrete produced with ettringite-based binders.” ACI Mater. J. 115 (1): 105–115.
Moser, R. D., P. M. Singh, L. F. Kahn, and K. E. Kurtis. 2012. “Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions.” Corros. Sci. 57 (Apr): 241–253. https://doi.org/10.1016/j.corsci.2011.12.012.
Odler, I. 2003. Special inorganic cements. Boca Raton, FL: CRC Press.
Park, S., Y. Jeong, J. Moon, and N. Lee. 2021. “Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes.” J. Build. Eng. 34 (Feb): 101880. https://doi.org/10.1016/j.jobe.2020.101880.
Paul, G., E. Boccaleri, L. Buzzi, F. Canonico, and D. Gastaldi. 2015. “Friedel’s salt formation in sulfoaluminate cements: A combined XRD and Al27 MAS NMR study.” Cem. Concr. Res. 67 (Jan): 93–102. https://doi.org/10.1016/j.cemconres.2014.08.004.
Pelletier-Chaignat, L., F. Winnefeld, B. Lothenbach, G. Le Saout, C. J. Müller, and C. Famy. 2011. “Influence of the calcium sulphate source on the hydration mechanism of portland cement–calcium sulphoaluminate clinker–calcium sulphate binders.” Cem. Concr. Compos. 33 (5): 551–561. https://doi.org/10.1016/j.cemconcomp.2011.03.005.
Péra, J., and J. Ambroise. 2004. “New applications of calcium sulfoaluminate cement.” Cem. Concr. Res. 34 (4): 671–676. https://doi.org/10.1016/j.cemconres.2003.10.019.
Quillin, K. 2001. “Performance of belite–sulfoaluminate cements.” Cem. Concr. Res. 31 (9): 1341–1349. https://doi.org/10.1016/S0008-8846(01)00543-9.
Redaoui, D., F. Sahnoune, M. Heraiz, and A. Raghdi. 2017. “Mechanism and kinetic parameters of the thermal decomposition of gibbsite Al(OH)3 by thermogravimetric analysis.” Acta Phys. Pol. A 131 (3): 562–565. https://doi.org/10.12693/APhysPolA.131.562.
Sahu, S., J. Havlica, V. Tomková, and J. Majling. 1991. “Hydration behaviour of sulphoaluminate belite cement in the presence op various calcium sulphates.” Thermochim. Acta 175 (1): 45–52. https://doi.org/10.1016/0040-6031(91)80244-D.
Scrivener, K., R. Snellings, and B. Lothenbach. 2018. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL: CRC Press.
Seo, J., S. Kim, S. Park, H. N. Yoon, and H.-K. Lee. 2021a. “Carbonation of calcium sulfoaluminate cement blended with blast furnace slag.” Cem. Concr. Compos. 118 (Apr): 103918. https://doi.org/10.1016/j.cemconcomp.2020.103918.
Seo, J., H. Yoon, S. Kim, Z. Wang, T. Kil, and H.-K. Lee. 2021b. “Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation.” Cem. Concr. Res. 146 (Aug): 106484. https://doi.org/10.1016/j.cemconres.2021.106484.
Shakouri, M. 2021. “Time-dependent concentration of chlorides at the concrete surface revisited.” Sustainable Resilient Infrastruct. 1–18. https://doi.org/10.1080/23789689.2021.1892965.
Sirtoli, D., M. Wyrzykowski, P. Riva, and P. Lura. 2020. “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements.” Mater. Struct. 53 (Oct): 1–14. https://doi.org/10.1617/s11527-020-01561-1.
Sirtoli, D., M. Wyrzykowski, P. Riva, S. Tortelli, M. Marchi, and P. Lura. 2019. “Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement.” Cem. Concr. Compos. 98 (Apr): 61–73. https://doi.org/10.1016/j.cemconcomp.2019.02.006.
Tan, B., M. U. Okoronkwo, A. Kumar, and H. Ma. 2020. “Durability of calcium sulfoaluminate cement concrete.” J. Zhejiang Univ.-Sci. A 21 (2): 118–128. https://doi.org/10.1631/jzus.A1900588.
Telesca, A., M. Marroccoli, M. L. Pace, M. Tomasulo, G. L. Valenti, and P. J. M. Monteiro. 2014. “A hydration study of various calcium sulfoaluminate cements.” Cem. Concr. Compos. 53 (Oct): 224–232. https://doi.org/10.1016/j.cemconcomp.2014.07.002.
Teymouri, M., M. Shakouri, and P. N. Vaddey. 2021. “pH-dependent chloride desorption isotherms of Portland cement paste.” Constr. Build. Mater. 312 (Dec): 125415. https://doi.org/10.1016/j.conbuildmat.2021.125415.
Trejo, D., and A. A. Ahmed. 2019. “Adopting auto-titration to assess chlorides in concrete.” ACI Mater. J. 116 (3): 43–52.
Wang, Y., Z. Shui, X. Gao, Y. Huang, R. Yu, and X. Xiao. 2019. “Modification on the chloride binding capacity of cementitious materials by aluminum compound addition.” Constr. Build. Mater. 222 (Oct): 15–25. https://doi.org/10.1016/j.conbuildmat.2019.06.137.
Winnefeld, F., and B. Lothenbach. 2010. “Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modelling.” Cem. Concr. Res. 40 (8): 1239–1247. https://doi.org/10.1016/j.cemconres.2009.08.014.
Wu, Z., C. Shi, P. Gao, D. Wang, and Z. Cao. 2015. “Effects of deicing salts on the scaling resistance of concrete.” J. Mater. Civ. Eng. 27 (5): 04014160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001106.
Zhang, L., and F. Glasser. 2002. “Hydration of calcium sulfoaluminate cement at less than 24 h.” Adv. Cem. Res. 14 (4): 141–155. https://doi.org/10.1680/adcr.2002.14.4.141.
Zhang, L., and F. P. Glasser. 2005. “Investigation of the microstructure and carbonation of CS¯A-based concretes removed from service.” Cem. Concr. Res. 35 (12): 2252–2260. https://doi.org/10.1016/j.cemconres.2004.08.007.
Zhang, L., M. Su, and Y. Wang. 1999. “Development of the use of sulfo-and ferroaluminate cements in China.” Adv. Cem. Res. 11 (1): 15–21. https://doi.org/10.1680/adcr.1999.11.1.15.
Zhao, J., G. Cai, D. Gao, and S. Zhao. 2014. “Influences of freeze–thaw cycle and curing time on chloride ion penetration resistance of Sulphoaluminate cement concrete.” Constr. Build. Mater. 53 (Feb): 305–311. https://doi.org/10.1016/j.conbuildmat.2013.11.110.
Zhou, Q., N. Milestone, and M. Hayes. 2006. “An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system.” J. Hazard. Mater. 136 (1): 120–129. https://doi.org/10.1016/j.jhazmat.2005.11.038.
Zhou, Y., B. Gencturk, K. Willam, and A. Attar. 2015. “Carbonation-induced and chloride-induced corrosion in reinforced concrete structures.” J. Mater. Civ. Eng. 27 (9): 04014245. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001209.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Jul 7, 2022
Accepted: Dec 27, 2022
Published online: May 26, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Mahmoud Shakouri [email protected]
Assistant Professor, Dept. of Construction Management, Colorado State Univ., 200 W. Lake St., 1584 Campus Delivery, Fort Collins, CO 80523 (corresponding author). Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, College of Engineering, Mustansiriyah Univ., Baghdad 10052, Iraq. ORCID: https://orcid.org/0000-0001-6143-8573. Email: [email protected]
Mohammad Teymouri [email protected]
Ph.D. Student, Dept. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523. Email: [email protected]
David Trejo [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share