Abstract

Expansive reactions such as delayed ettringite formation (DEF) can lead to mechanical and microstructural changes in concrete, resulting in considerable damage to the structures. DEF usually occurs in concrete that has reached a high temperature after being exposed to moisture. This paper presents the assessment of concretes with and without pozzolan in laboratory in order to monitor and evaluate expansions, as well as their main properties and characteristics over a period of 12 months, after undergoing DEF at a temperature of 85°C and with drying-wetting cycles. An increase in expansion caused by DEF was tracked through a series of microscopical observations, along with evaluations of concrete deterioration. Additional tools, such as the stiffness damage test (SDT) and deteriorated damage index (DRI), were also employed in the experiments. Furthermore, an overall approach to DEF was adopted, together with a performance appraisal based on data from the research program and a detailed analysis to quantify the extent of the damage to concretes and to estimate the different deterioration levels.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all of the data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to express their gratitude to the Instituto Meridional (IMED)—Passo Fundo/RS Campus, Fundação Meridional and Furnas Centrais Elétricas S.A for their assistance. This work has also been given infrastructural support by IMED and ELETROBRAS Furnas. This research was based on a P&D Project from ANEEL (Brazilian National Electric Energy Agency) and supported by Furnas Centrais Elétricas S. A. with the cooperation of IMED—P&D No. 0394-1504/2015.

References

ABNT (Associação Brasileira de Normas Técnicas). 2011. Concreto e argamassa—Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. NBR 7222. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2014. Projeto de estruturas de concreto—Procedimento. NBR 6118. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Concreto—Procedimento para moldagem e cura de corpos de prova. NBR 5738. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2017. Concreto—Determinação dos módulos estáticos de elasticidade e de deformação à compressão. NBR 8522. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018a. Agregados—Reatividade álcali-agregado—Parte 5 Determinação da mitigação da expansão em barras de argamassa pelo método acelerado. NBR 15577-5. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018b. Cimento portland—Requisitos. NBR 16697. Rio de Janeiro, Brazil: ABNT.
Al Shamaa, M., S. Lavaud, L. Divet, J. B. Colliat, G. Nahas, and J. M. Torrenti. 2016. “Influence of limestone filler and of the size of the aggregates on DEF.” Cem. Concr. Compos. 71 (Aug): 175–180. https://doi.org/10.1016/j.cemconcomp.2016.05.007.
ASTM. 2020. Standard test method for compositional analysis by thermogravimetry 1. ASTM E1131-20. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard specification for blended hydraulic cements. ASTM C595/C595M-21. West Conshohocken, PA: ASTM.
ASTM. 2022. Standard specification for portland cement. ASTM C150/C150M-22. West Conshohocken, PA: ASTM.
Bauer, S., B. Cornell, D. Figurski, T. Ley, J. Miralles, and K. Folliard. 2006. Alkali-silica reaction and delayed ettringite formation in concrete: A literature review. Austin, TX: Univ. of Texas at Austin.
Bezerra, A., G. Andrade, L. Sanchez, and M. Fraser. 2020. “Automated assessment of AAR damage in concrete in progress.” In Proc., Int. Conf. on Alkali-Aggregate Reaction in Concrete. Lisbon, Portugal: Laboratório Nacional de Engenharia Civil.
Bezerra, A. C. 2021. “The use of artificial intelligence for assessing damage in concrete affected by alkali-silica reaction (ASR).” Master’s thesis, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Ottawa.
Blanco, A., F. Pardo-Bosch, S. Cavalaro, and A. Aguado. 2019. “Lessons learned about the diagnosis of pathologies in concrete dams: 30 years of research and practice.” Constr. Build. Mater. 197 (Feb): 356–368. https://doi.org/10.1016/j.conbuildmat.2018.11.143.
Bragança, M. O. G. P., N. P. Hasparyk, J. L. Bronholo, A. S. Silva, K. F. Portella, and S. C. Kuperman. 2021. “Electrochemical impedance spectroscopy and ultrasound for monitoring expansive reactions and their interactions on cement composites.” Constr. Build. Mater. 305 (Feb): 124726. https://doi.org/10.1016/j.conbuildmat.2021.124726.
Bronholo, J. 2020. “Estudo do ataque individual e misto de DEF e RAA e de seus efeitos deletérios nas propriedades físico-químicas e mecânicas de concretos e argamassas de cimento Portland Pozolânico e de alta resistência.” Dissertação de Mestrado, Departamento de Engenharia Civil, Instituto de Engenharia do Paraná.
Brown, P. W., and J. V. Bothe. 1993. “The stability of ettringite.” Adv. Cem. Res. 5 (18): 47–63. https://doi.org/10.1680/adcr.1993.5.18.47.
Brunetaud, X. 2005. “Etude de l’influence de différents paramètres et de leurs interactions sur la cinétique et l’amplitude de la réaction sulfatique interne au béton.” Thesis, Département de Génie Civil, École Centrale Paris.
Day, R. L. 2000. “Development of performance tests for sulfate attack on cementitious systems.” Cem. Concr. Aggregates 22 (2): 169–176. https://doi.org/10.1520/CCA10477J.
Deboucha, W., N. Leklou, and A. Khelidj. 2018. “Blast furnace slag addition effects on delayed ettringite formation in heat-cured mortars.” ASCE J. Civ. Eng. 22 (9): 3484–3490. https://doi.org/10.1007/s12205-017-0642-6.
Diamond, S. 1996. “Delayed ettringite formation—Processes and problems.” Cem. Concr. Compos. 18 (3): 205–215. https://doi.org/10.1016/0958-9465(96)00017-0.
Folliard, K. 2006. “Computer programs designed to improve concrete.” In Materials performance. Houston, TX: AMPP Publications.
Fu, Y., J. Ding, and J. J. Beaudoin. 1997. “Expansion of portland cement mortar due to internal sulfate attack.” Cem. Concr. Res. 27 (9): 1299–1306. https://doi.org/10.1016/S0008-8846(97)00133-6.
Giannini, E. R., L. F. M. Sanchez, A. Tuinukuafe, and K. J. Folliard. 2018. “Characterization of concrete affected by delayed ettringite formation using the stiffness damage test.” Constr. Build. Mater. 162 (Feb): 253–264. https://doi.org/10.1016/j.conbuildmat.2017.12.012.
Godart, B. 2017. “Pathology, assessment and treatment of structures affected by delayed ettringite formation.” Struct. Eng. Int. 27 (3): 362–369. https://doi.org/10.2749/101686617X14881932436771.
Godart, B., and L. Divet. 2013. “Lessons learned from structures damaged by delayed ettringite formation and the French prevention strategy.” In Proc., 5th Int. Conf. on Forensic Engineering, Forensic Engineering: Informing the Future with Lessons from the Past, 389–400. London: Institution of Civil Engineers.
Gomides, M. D. J. 2009. “Investigação de agregados contendo sulfetos e seus efeitos sobre a durabilidade do concreto.” Tese de Doutorado, Departamento de Engenharia Civil, Universidade Federal do Rio Grande do Sul.
Hasparyk, N., and L. F. M. Sanchez. 2021. SDT—Método de Ensaio para a Determinação do Índice de Dano de Rigidez (SDI) e Índice de Deformação Plástica (PDI) em Concretos. Goiania, Brazil: Furnas.
Hasparyk, N., D. Schovanz, and S. C. Kuperman. 2020. Método de Ensaio para a Avaliação do Potencial de Ocorrência da Etringita Tardia (DEF) em Concreto. Goiania, Brazil: Furnas.
Hasparyk, N. P., and S. C. Kuperman. 2019. “Deterioração do concreto por reações expansivas.” In Proc., 32nd Seminário Nacional de Grandes Barragens—Comitê Brasileiro de Barragens. Rio de Janeiro, Brazil: Comitê Brasileiro de Barragens.
Hasparyk, N. P., S. C. Kuperman, and J. R. Torres. 2016. “Combined attack from AAR and DEF in the foundation blocks of a building.” In Proc., 15th Int. Conf. on Alkali-Aggregate Reaction, edited by H. M. Bernardes and N. P. Hasparyk. Sao Paulo, Brazil: International Conference on Alkali-Aggregate Reaction Proceedings.
Hasparyk, N. P., D. Schovanz, F. Tiecher, and S. C. Kuperman. 2022. “Global analysis of DEF damage to concretes with and without fly-ash.” Rev. IBRACON Estruturas Mater. 15 (3): 1–19. https://doi.org/10.1590/s1983-41952022000300005.
Hobbs, D. W. 1999. “Expansion and cracking in concrete associated with delayed Ettringite formation.” In Ettringite: The sometimes host of destruction, edited by B. Erlin, 159–182. Farmington Hills, MI: American Concrete Institute.
Höhlig, B., C. Schröfl, S. Hempel, I. Noack, V. Mechtcherine, D. Schmidt, U. Trommler, and U. Roland. 2017. “Heat treatment of fresh concrete by radio waves—Avoiding delayed ettringite formation.” Constr. Build. Mater. 143 (Jul): 580–588. https://doi.org/10.1016/j.conbuildmat.2017.03.111.
Hoppe Filho, J., A. Gobbi, E. Pereira, R. S. Tanaka, and M. H. F. de Medeiros. 2017. “Atividade pozolânica de adições minerais para cimento Portland (Parte II): Índice de atividade pozolânica com cimento Portland (IAP), difração de raios-X (DRX) e termogravimetria (TG/DTG).” Matéria 22 (3): 1–19. https://doi.org/10.1590/s1517-707620170003.0207.
IFFSTAR. 2018. Recommendations for preventing disorders due to delayed ettringite formation. Paris: IFSTTAR.
Jasiczak, J., and Z. Owsiak. 2017. “Next problems with the railway prestressed sleepers cracking in concrete as an effect of delayed ettringite formation.” In Proc., 10th Int. Conf. on the Bearing Capacity of Roads, Railways and Airfields Bearing Capacity of Roads, Railways and Airfields, BCRRA 2017, 2069–2074. Boca Raton, FL: CRC Press.
Jebli, M., F. Jamin, C. Pelissou, E. Lhopital, and M. S. el Youssoufi. 2021. “Characterization of the expansion due to the delayed ettringite formation at the cement paste-aggregate interface.” Constr. Build. Mater. 289 (Jun): 122979. https://doi.org/10.1016/j.conbuildmat.2021.122979.
Kelham, S. 1996. “The effect of cement composition and fineness on expansion associated with delayed ettringite formation.” Cem. Concr. Compos. 18 (3): 171–179. https://doi.org/10.1016/0958-9465(95)00013-5.
LCPC (Laboratoire Central des Ponts et Chaussées). 2007. Méthode d’essai des lpc n°66—Réactivité d’ un béton vis-à-vis d’ une réaction sulfatique interne Essai de performance. Paris: IFFSTAR.
Ma, K., G. Long, and Y. Xie. 2017. “A real case of steam-cured concrete track slab premature deterioration due to ASR and DEF.” Case Stud. Constr. Mater. 6 (Jun): 63–71. https://doi.org/10.1016/j.cscm.2016.12.001.
Malbois, M., B. Nedjar, S. Lavaud, C. Rospars, L. Divet, and J. M. Torrenti. 2019. “On DEF expansion modelling in concrete structures under variable hydric conditions.” Constr. Build. Mater. 207 (May): 396–402. https://doi.org/10.1016/j.conbuildmat.2019.02.142.
Martin, R.-P., L. Sanchez, B. Fournier, and F. Toutlemonde. 2017. “Evaluation of different techniques for the diagnosis & prognosis of internal swelling reaction (ISR) mechanisms in concrete.” Constr. Build. Mater. 156 (Dec): 956–964. https://doi.org/10.1016/j.conbuildmat.2017.09.047.
Melo, S. K. D. E. 2010. “Estudo da formação da etringita tardia em concreto por calor de hidratação do cimento.” Dissertação de Mestrado, Departamento de Engenharia Civil, Universidade Federal de Goiás.
Metha, P. K., and P. J. M. Monteiro. 2014. “Microestrutura do Concreto.” In Microestrutura, propriedades e materiais, edited by N. P. Hasparyk. Sao Paulo, Brasil: IBRACON.
Mohammadi, A., E. Ghiasvand, and M. Nili. 2020. “Relation between mechanical properties of concrete and alkali-silica reaction (ASR): A review.” Constr. Build. Mater. 258 (Oct): 119567. https://doi.org/10.1016/j.conbuildmat.2020.119567.
Nascimento, N. P. D. S. 2020. “Diagnostic of concrete samples extracted from pile caps affected by internal swelling reactions.” Master’s thesis, Dept. of Construction Engineering, UNICAP.
Pichelin, A., M. Carcassès, F. Cassagnabère, S. Multon, and G. Nahas. 2020. “Sustainability, transfer and containment properties of concrete subject to delayed ettringite formation (DEF).” Cem. Concr. Compos. 113 (Jul): 103738. https://doi.org/10.1016/j.cemconcomp.2020.103738.
Portella, F. K., N. P. Hasparyk, M. D. G. P. Bragança, J. L. Bronholo, B. G. Dias, and L. E. Lagoeiro. 2021. “Multiple techniques of microstructural characterization of DEF: Case of study with high early strength Portland cement composites.” Constr. Build. Mater. 311 (Oct): 125341. https://doi.org/10.1016/j.conbuildmat.2021.125341.
Ramlochan, T., M. D. A. Thomas, and R. D. Hooton. 2004. “The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature—Part II: Microstructural and microchemical investigations.” Cem. Concr. Res. 34 (8): 1341–1356. https://doi.org/10.1016/j.cemconres.2003.12.026.
Sanchez, L., and M. Terra. 2019. “Using machine learning for condition assessment of concrete infrastructure.” Concr. Int. 41 (11): 35–39.
Sanchez, L. F. M., T. Drimalas, and B. Fournier. 2020. “Assessing condition of concrete affected by internal swelling reactions (ISR) through the Damage Rating Index (DRI).” Cement 1–2 (Jul): 100001. https://doi.org/10.1016/j.cement.2020.100001.
Sanchez, L. F. M., T. Drimalas, B. Fournier, D. Mitchell, and J. Bastien. 2018. “Comprehensive damage assessment in concrete affected by different internal swelling reaction (ISR) mechanisms.” Cem. Concr. Res. 107 (Mar): 284–303. https://doi.org/10.1016/j.cemconres.2018.02.017.
Sanchez, L. F. M., B. Fournier, M. Jolin, D. Mitchell, and J. Bastien. 2017. “Cement and concrete research overall assessment of alkali-aggregate reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures.” Cem. Concr. Res. 93 (Mar): 17–31. https://doi.org/10.1016/j.cemconres.2016.12.001.
Schovanz, D. 2019. “Estudo da Formação da Etringita Tardia (DEF) em Concretos com Cimento Portland Pozolânico e de Alta Resistência.” SSRN Electr. J. 5 (564): 1–19. https://doi.org/10.4324/9781315853178.
Schovanz, D., F. Tiecher, N. P. Hasparyk, S. Kuperman, and R. T. Lermen. 2021. “Evaluation of delayed ettringite formation through physical, mechanical, and microstructural assays.” ACI Mater. J. 118 (1): 101–109. https://doi.org/10.14359/51728282.
Schovanz, D., F. Tiecher, N. P. Hasparyk, and S. C. Kuperman. 2019. “Influência da formação da etringita tardia (DEF) na microestrutura e propriedades mecânicas do concreto.” In Proc., 61° Congresso Brasileiro do Concreto CBC2019, 1–17. Sao Paulo, Brasil: IBRACON.
Scrivener, K. L., D. Damidot, and C. Famy. 1999. “Possible mechanisms of expansion of concrete exposed to elevated temperatures during curing (also known as DEF) and implications for avoidance of field problems.” Cem. Concr. Aggregates 21 (Jun): 93–101. https://doi.org/10.1520/CCA10513J.
Silva, A. S., A. F. Gonçalves, and M. Pipa. 2008. “Diagnosis and prognosis of portuguese concrete railway sleepers degradation—A combination of ASR and DEF.” In Proc., 13th Int. Conf. on Alkali-Aggregate Reaction in Concrete, edited by A. T. M. B. Maarten and J. W. Borge. Washington, DC: TRB Publications.
Silva, A. S., A. B. Ribeiro, and L. Divet. 2021. “Prevention of internal sulphate reaction in concrete. Long-term results of the effect of mineral additions.” In Proc., 16° Int. Conf. on Alkali Aggregate Reaction in Concrete (16th ICAAR). Lisboa, Portugal. Laboratório Nacional de Engenharia Civil.
Taylor, H. F. W. 1997. Cement chemistry. London: Thomas Telford. https://doi.org/10.1680/cc.25929.
Taylor, H. F. W., C. Famy, and K. L. Scrivener. 2001. “Delayed ettringite formation.” Cem. Concr. Res. 31 (5): 683–693. https://doi.org/10.1016/S0008-8846(01)00466-5.
Thiebaut, Y., S. Multon, A. Sellier, L. Lacarrière, L. Boutillon, D. Belili, L. Linger, F. Cussigh, and S. Hadji. 2018. “Effects of stress on concrete expansion due to delayed ettringite formation.” Constr. Build. Mater. 183 (Sep): 626–641. https://doi.org/10.1016/j.conbuildmat.2018.06.172.
Tiecher, F., M. Langoski, and N. Hasparyk. 2021. “Behavior of mortars with different types of cement when induced to delayed ettringite formation (DEF).” Rev. ALCONPAT 11 (3): 1–16. https://doi.org/10.21041/ra.v11i3.537.
Tosun, H. 2006. “Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured portland cement mortars.” Cem. Concr. Compos. 28 (9): 761–772. https://doi.org/10.1016/j.cemconcomp.2006.06.003.
Villeneuve, V. 2011. “Determination De L’ Endommagement Du Béton Par Méthode Pétrographique.” Thesis of Doctorat, Département de Géologie et de Génie Géologique, Université Laval Québec.
Yammine, A., N. Leklou, M. Choinska, F. Bignonnet, and J.-M. Mechling. 2020. “DEF damage in heat cured mortars made of recycled concrete sand aggregate.” Constr. Build. Mater. 252 (Aug): 119059. https://doi.org/10.1016/j.conbuildmat.2020.119059.
Zhang, Y., Y. Pan, and D. Zhang. 2021. “A literature review on delayed ettringite formation: Mechanism, affect factors and suppressing methods.” Mag. Concr. Res. 73 (7): 325–342. https://doi.org/10.1680/jmacr.20.00268.
Zhang, Z., Q. Wang, H. Chen, and Y. Zhou. 2017. “Influence of the initial moist curing time on the sulfate attack resistance of concretes with different binders.” Constr. Build. Mater. 144 (Jun): 541–551. https://doi.org/10.1016/j.conbuildmat.2017.03.235.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Jun 11, 2022
Accepted: Dec 29, 2022
Published online: May 26, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 90035-190, Brazil. ORCID: https://orcid.org/0000-0003-2705-5098. Email: [email protected]
N. P. Hasparyk, Ph.D. [email protected]
Researcher, Departamento de Segurança de Barragens e Tecnologia, ELETROBRAS Furnas Centrais Elétricas S.A., Goiânia 74924-190, Brazil. Email: [email protected]
Professor, Dept. of Civil Engineering, Faculdade Meridional–Passo Fundo, Rio Grande do Sul 90130-120, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-5411-9299. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share