Abstract

Compared with portland-cement-based matrices, the high mechanical strength, satisfactory durability, and sustainable features of geopolymeric matrices have brought great interest in the civil construction sector. Excessive activator content in a geopolymer mixture can cause efflorescence, a phenomenon related to the unreacted alkalis that compromise the mechanical properties and aesthetics of the structures. This article proposes applying statistical mixture design (SMD), associated with simultaneous optimization for the dosage of geopolymeric matrices, to evaluate and mitigate efflorescence. Based on the extreme vertices screening design, the formulations were made using metakaolin as a precursor, NaOH and sodium silicate as the activator, and sand and superplasticizer. The formulation with the lowest efflorescence formation, highest compressive strength, and adequate workability was the one whose molarity of NaOH was equal to 9.02 M, and the ratios Na2O/Al2O3, SiO2/Al2O3, and H2O/Na2O were equivalent to 1.43, 2.65, and 8.36, respectively. In addition, the Na2O/Al2O3 ratio was the predominant factor for efflorescence occurrence. SMD associated with simultaneous optimization is a technically viable alternative for minimizing free sodium in geopolymeric matrices.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank FAPESB–Bahia Research Foundation and PPEC/UFBA–Postgraduate Program in Civil Engineering at the Federal University of Bahia (Brazil).

References

Akalin, O., K. U. Akay, and B. Sennaroglu. 2010. “Self-consolidating high-strength concrete optimization by mixture design method.” ACI Mater. J. 107 (4): 357. https://doi.org/10.14359/51663861.
Amorim Júnior, N. S. A., J. S. A. Neto, H. A. Santana, M. S. Cilla, and D. V. Ribeiro. 2021. “Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential.” Constr. Build. Mater. 287 (Jun): 122970. https://doi.org/10.1016/j.conbuildmat.2021.122970.
Anderson, M. J., P. J. Whitcomb, and M. A. Bezener. 2018. Formulation simplified: Finding the sweet spot through design and analysis of experiments with mixtures. New York: Productivity Press.
Arimanwa, J. I., D. O. Onwuka, M. C. Arimanwa, and U. S. Onwuka. 2011. “Prediction of the compressive strength of aluminum waste–cement concrete using Scheffe’s theory.” J. Mater. Civ. Eng. 24 (2): 177–183. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000369.
Aziminezhad, M., M. Mahdikhani, and M. M. Memarpour. 2018. “RSM-based modeling and optimization of self-consolidating mortar to predict acceptable ranges of rheological properties.” Constr. Build. Mater. 189 (Nov): 1200–1213. https://doi.org/10.1016/j.conbuildmat.2018.09.019.
Benabed, B., E. H. Kadri, L. Azzouz, and S. Kenai. 2012. “Properties of self-compacting mortar made with various types of sand.” Cem. Concr. Compos. 34 (10): 1167–1173. https://doi.org/10.1016/j.cemconcomp.2012.07.007.
Carabba, L., S. Manzi, and M. Bignozzi. 2016. “Superplasticizer addition to carbon fly ash geopolymers activated at room temperature.” Materials (Basel) 9 (7): 586. https://doi.org/10.3390/ma9070586.
Cornell, J. A. 2011. Experiments with mixtures: Designs, models, and the analysis of mixture data. New York: Wiley.
Damineli, B. L. 2013. “Conceitos para formulação de concretos com baixo consumo de ligantes: Controle reológico, empacotamento e dispersão de partículas.” Ph.D. thesis, Dept. of Civil Construction Engineering, Universidade de São Paulo.
Derringer, G., and R. Suich. 1980. “Simultaneous optimization of several response variables.” J. Qual. Technol. 12 (4): 214–219. https://doi.org/10.1080/00224065.1980.11980968.
Dias, C. M., H. Savastano, M. E. S. Taqueda, and V. M. John. 2010a. “Mixture screening design to choose formulations for functionally graded fiber cements.” In Vol. 631 of Materials science forum, 65–70. Sendai, Japan: Trans Tech Publications.
Dias, C. M. R., E. M. B. Campello, H. Savastano Jr., and V. M. John. 2018. “Exploratory pre-industrial test linking FGM and Hatschek technologies for the manufacture of asbestos-free corrugated cementitious roof sheets.” Constr. Build. Mater. 190 (Nov): 975–984. https://doi.org/10.1016/j.conbuildmat.2018.09.171.
Dias, C. M. R., H. Savastan Jr., and V. M. John. 2010b. “Exploring the potential of functionally graded materials concept for the development of fiber cement.” Constr. Build. Mater. 24 (2): 140–146. https://doi.org/10.1016/j.conbuildmat.2008.01.017.
Dow, C., and F. P. Glasser. 2003. “Calcium carbonate efflorescence on Portland cement and building materials.” Cem. Concr. Res. 33 (1): 147–154. https://doi.org/10.1016/S0008-8846(02)00937-7.
EFNARC (European Federation of National Associations Representing for Concrete). 2002. Specification and Guidelines for self-compacting concrete. Surrey, UK: EFNARC.
EFNARC (European Federation of National Associations Representing for Concrete). 2005. The European guidelines for self-compacting concrete. Surrey, UK: EFNARC.
El Hameed, M. F. A., M. F. Ghazy, and M. A. A. A. Elaty. 2016. “Cement mortar with nanosilica: Experiments with mixture design method.” ACI Mater. J. 113 (1): 43. https://doi.org/10.14359/51688632.
Glukhovsky, V. 1994. “Ancient, modern and future concretes.” In Vol. 1 of Proc., 1st Int. Conf. on Alkaline Cements and Concretes, 1–8. Wuhan, China: Scientific Research Publishing.
Gülşan, M. E., R. Alzeebaree, A. A. Rasheed, A. Niş, and A. E. Kurtoğlu. 2019. “Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber.” Constr. Build. Mater. 211 (Jun): 271–283. https://doi.org/10.1016/j.conbuildmat.2019.03.228.
Javier, C. S. 2015. “Selecting the slack variable in mixture experiment.” Ing. Investigación y Tecnología 16 (4): 613–623. https://doi.org/10.1016/j.riit.2015.09.013.
Jaya, N. A., L. Yun-Ming, M. M. A. B. Abdullah, H. Cheng-Yong, and K. Hussin. 2018. “Effect of sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers.” In Proc., IOP Conf. Series: Materials Science and Engineering. Bristol, UK: IOP Publishing. https://doi.org/10.1088/1757-899X/343/1/012015.
Jiao, D., C. Shi, Q. Yuan, X. An, and Y. Liu. 2018. “Mixture design of concrete using simplex centroid design method.” Cem. Concr. Compos. 89 (May): 76–88. https://doi.org/10.1016/j.cemconcomp.2018.03.001.
Juengsuwattananon, K., F. Winnefeld, P. Chindaprasirt, and K. Pimraksa. 2019. “Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer.” Constr. Build. Mater. 226 (Nov): 406–417. https://doi.org/10.1016/j.conbuildmat.2019.07.146.
Kani, E. N., A. Allahverdi, and J. L. Provis. 2012. “Efflorescence control in geopolymer binders based on natural pozzolan.” Cem. Concr. Compos. 34 (1): 25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007.
Le Roy, R., and N. Roussel. 2005. “The Marsh Cone as a viscometer: Theoretical analysis and practical limits.” Mater. Struct. 38 (1): 25–30. https://doi.org/10.1007/BF02480571.
Longhi, M. A., E. D. Rodriguez, B. Walkley, Z. Zhang, and A. P. Kirchheim. 2020. “Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation.” Composites, Part B 182 (Feb): 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
Longhi, M. A., Z. Zhang, E. D. Rodriguez, A. P. Kirchheim, and H. Wang. 2019. “Efflorescence of alkali-activated cements (Geopolymers) and the impacts on material structures: A critical analysis.” Front. Mater. 6 (Apr): 89. https://doi.org/10.3389/fmats.2019.00089.
Longhi, M. A., Z. Zhang, B. Walkley, E. D. Rodríguez, and A. P. Kirchheim. 2021. “Strategies for control and mitigation of efflorescence in metakaolin-based geopolymers.” Cem. Concr. Res. 144 (Jun): 106431. https://doi.org/10.1016/j.cemconres.2021.106431.
Marquardt, D. W., and R. D. Snee. 1974. “Test statistics for mixture models.” Technometrics 16 (4): 533–537. https://doi.org/10.1080/00401706.1974.10489234.
Memon, F. A., M. F. Nuruddin, S. Demie, and N. Shafiq. 2011. “Effect of curing conditions on strength of fly ash-based self-compacting geopolymer concrete.” Int. J. Civ. Environ. Eng. 5 (8): 342–345. https://doi.org/10.5281/zenodo.1070949.
Mendes, M., E. Bauer, and F. Silva. 2017. “Avaliação dos parâmetros de autoadensabilidade e de reologia do concreto autoadensável.” Rev. Matér. 22 (4). https://doi.org/10.1590/S1517-707620170004.0212.
Mermerdaş, K., Z. Algin, S. M. Oleiwi, and D. E. Nassani. 2017. “Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method.” Constr. Build. Mater. 139 (May): 159–171. https://doi.org/10.1016/j.conbuildmat.2017.02.050.
Mohajerani, A., D. Suter, T. Jeffrey-Bailey, T. Song, A. Arulrajah, S. Horpibulsuk, and D. Law. 2019. “Recycling waste materials in geopolymer concrete.” Clean Technol. Environ. Policy 21 (3): 493–515. https://doi.org/10.1007/s10098-018-01660-2.
Motorwala, A., V. Shah, R. Kammula, P. Nannapaneni, and D. B. Raijiwala. 2013. “Alkali activated FLY-ASH based geopolymer concrete.” Int. J. Emerging Technol. Adv. Eng. 3 (1): 159–166.
Muttashar, H. L., M. A. M. Ariffin, M. N. Hussein, M. W. Hussin, and S. B. Ishaq. 2018. “Self-compacting geopolymer concrete with spend garnet as sand replacement.” J. Build. Eng. 15 (Jan): 85–94. https://doi.org/10.1016/j.jobe.2017.10.007.
Nematollahi, B., and J. Sanjayan. 2014. “Efficacy of available superplasticizers on geopolymers.” Res. J. Appl. Sci. Eng. Technol. 7 (7): 1464–1468. https://doi.org/10.19026/rjaset.7.420.
Palacios, M., and F. Puertas. 2005. “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cem. Concr. Res. 35 (7): 1358–1367. https://doi.org/10.1016/j.cemconres.2004.10.014.
Piepel, G. F. 2006. “A note comparing component-slop, Scheffé and Cox parameterizations of the linear mixture experiment model.” J. Appl. Stat. 33 (4): 397–403. https://doi.org/10.1080/02664760500449170.
Piepel, G. F., S. K. Cooley, and B. Jones. 2005. “Construction of a 21-component layered mixture experiment design using a new mixture coordinate-exchange algorithm.” Qual. Eng. 17 (4): 579–594. https://doi.org/10.1080/08982110500225364.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (Jul): : 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Santana, H. A., J. S. Andrade Neto, N. S. Andrade Neto, D. V. Ribeiro, M. S. Cilla, and C. M. Dias. 2020. “Self-compacting geopolymer mixture: Dosing based on statistical mixture design and simultaneous optimization.” Constr. Build. Mater. 249 (Jul): 118677. https://doi.org/10.1016/j.conbuildmat.2020.118677.
Santana, H. A., N. S. A. Júnior, D. V. Ribeiro, M. S. Cilla, and C. M. Dias. 2021a. “Vegetable fibers behavior in geopolymers and alkali-activated cement based matrices: A review.” J. Build. Eng. 44 (Dec): 103291. https://doi.org/10.1016/j.jobe.2021.103291.
Santana, H. A., N. S. A. Júnior, D. V. Ribeiro, M. S. Cilla, and C. M. Dias. 2021b. “3D printed mesh reinforced geopolymer: Notched prism bending.” Cem. Concr. Compos. 116 (Feb): 103892. https://doi.org/10.1016/j.cemconcomp.2020.103892.
Scheffé, H. 1958. “Experiments with mixtures.” J. R. Stat. Soc. B 20 (2): 344–360.
Schwartzentruber, L. D., R. Le Roy, and J. Cordin. 2006. “Rheological behaviour of fresh cement pastes formulated from a self compacting concrete (SCC).” Cem. Concr. Res. 36 (7): 1203–1213. https://doi.org/10.1016/j.cemconres.2004.10.036.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Jun): 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Szklorzová, H., and V. Bílek. 2008. “Influence of alkali ions in the activator on the performance of alkali-activated mortars.” In Proc., 3rd Int. Symp. on Non-traditional Cement and Concrete, 10–12. Brno, Czech Republic: Brno Univ. of Technology. https://doi.org/10.3390/su13020473.
Wang, Y., X. Liu, W. Zhang, Z. Li, Y. Zhang, Y. Li, and Y. Ren. 2020. “Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer.” J. Cleaner Prod. 244 (Jan): 118852. https://doi.org/10.1016/j.jclepro.2019.118852.
Xue, X., Y. L. Liu, and J. G. Dai. 2018. “Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification.” Cem. Concr. Compos. 94 (Nov): 43–52. https://doi.org/10.1016/j.cemconcomp.2018.08.013.
Zhang, Z., J. L. Provis, A. Reid, and H. Wang. 2014. “Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence.” Cem. Concr. Res. 64 (Oct): 30–41. https://doi.org/10.1016/j.cemconres.2014.06.004.
Zhou, M., Z. Wu, X. Ouyang, X. Hu, and C. Shi. 2021. “Mixture design methods for ultra-high-performance concrete: A review.” Cem. Concr. Compos. 124 (Nov): 104242. https://doi.org/10.1016/j.cemconcomp.2021.104242.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 7July 2023

History

Received: May 30, 2022
Accepted: Nov 21, 2022
Published online: Apr 25, 2023
Published in print: Jul 1, 2023
Discussion open until: Sep 25, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student in Post-Graduate Program in Civil Engineering (PPEC), Federal Univ. of Bahia, Rua Aristides Novis, 02, Federação, Salvador/BA 40210-630, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1425-9438. Email: [email protected]
Nilson S. Amorim Júnior [email protected]
Ph.D. Student in Post-Graduate Program in Civil Engineering (PPEC), Federal Univ. of Bahia, Rua Aristides Novis, 02, Federação, Salvador/BA 40210-630, Brazil. Email: [email protected]
Daniel V. Ribeiro [email protected]
Professor, Departamento de Ciência e Tecnologia dos Materiais, Universidade Federal da Bahia, Rua Aristides Novis, 02, Federação, Salvador/BA 40210-630, Brazil. Email: [email protected]
Professor, Departamento de Ciência e Tecnologia dos Materiais, Universidade Federal da Bahia, Rua Aristides Novis, 02, Federação, Salvador/BA 40210-630, Brazil. ORCID: https://orcid.org/0000-0001-7984-6620. Email: [email protected]
Professor, Departamento de Ciência e Tecnologia dos Materiais, Universidade Federal da Bahia, Rua Aristides Novis, 02, Federação, Salvador/BA 40210-630, Brazil. ORCID: https://orcid.org/0000-0001-5104-9240. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share