Technical Papers
Sep 15, 2023

Assessment of 40 Empirical Models for Estimating Reference Evapotranspiration under the Three Major Climate Zones of Iraq

Publication: Journal of Irrigation and Drainage Engineering
Volume 149, Issue 11

Abstract

Accurate reference evapotranspiration (ETo) estimation is crucial for water irrigation management and sustainable agriculture planning. The difficulty in obtaining several data requirements for employing the recommended Food and Agriculture Organization Penman-Monteith method (FAO-PM) for reliable estimation of ETo has led to the development of many empirical models. This is particularly crucial for Iraq, located in West Asia (29°15′00″–38°15′00″ N; 38°45′00″–48°45′00″ E), where meteorological data are often limited or missing. The objectives of the present study were to assess the performance of 40 ETo empirical models (13 radiation-based, 13 mass-transfer-based, and 14 temperature-based) against the FAO-PM model and identify alternative models with the minimal available data in three major climatic zones of Iraq: the Mediterranean climate (MCZ), semiarid (SCZ), and arid desert (ACZ). The recent ERA5 data set was adopted. The results indicate that (1) the Rohwer mass-transfer method is the best for estimating ETo for two-thirds of Iraq with a mean correlation coefficient (R2) of 0.97, mean Kling-Gupta efficiency (KGE) of 0.84, mean percent bias (PBIAS) of 8.92%, mean Nash-Sutcliffe efficiency coefficient (NSE) of 0.92, and root mean square error (RMSE)-observations standard deviation ratio (RSR) of 0.27, followed by the Penman (R2=0.90, KGE=0.75, NSE=0.77, RSR=0.46, and PBIAS=6.36%) and Caprio (R2=0.90, KGE=0.66, NSE=0.54, RSR=0.58, and PBIAS=24.64%) models; (2) Caprio is the best radiation-based model for estimating ETo, mainly in the ACZ, whereas Kharrufa is the best temperature-based model for estimating ETo, primarily in the SCZ and ACZ. Overall, the mass-transfer-based models performed better than other-based models for ETo estimation. The outcomes of this study provide a scientific reference for accurate ETo estimation using empirical models under limited data sets, which is valuable for irrigation management in Iraq.

Practical Applications

Accurately estimating ETo is vital for effective water irrigation management and sustainable agriculture planning. However, the recommended method for estimating ETo, the FAO-PM method, requires various data inputs that may not always be readily available, especially in regions like Iraq. Therefore, this study assessed the performance of 40 empirical ETo models, categorized into radiation-based, mass-transfer-based, and temperature-based models, against the FAO-PM model in three major climatic zones of Iraq: the Mediterranean climate, the semiarid region, and the arid desert. The study found that the Rohwer mass-transfer method showed the best performance in estimating ETo for two-thirds of Iraq. The Penman and Caprio models also performed well in estimating ETo in specific areas. The study revealed that the choice of the ETo model varied depending on the climatic zone. The Caprio model performed best for radiation-based estimation in the arid desert, whereas the Kharrufa model was most effective for temperature-based estimation in the semiarid region and arid desert. Overall, the mass-transfer-based models outperformed other types of models in ETo estimation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data and code will be made available by request from the corresponding author.

Acknowledgments

The authors are thankful to ECMWF for supplying climate data sets of ERA5 through their official web portal.
Author contribution: Both authors contributed equally to conceptualizing and designing the study. Alaa A. Jasim downloaded data, performed the necessary analysis, prepared results, and wrote the original draft. Shamsuddin Shahid wrote the programming code for data analysis and revised the original draft to generate the final version.

References

Abtew, W. 1996. “Evapotranspiration measurements and modeling for three wetland systems in South Florida 1.” J. Am. Water Resour. Assoc. 32 (3): 465–473. https://doi.org/10.1111/j.1752-1688.1996.tb04044.x.
Ahmadi, S. H., and Z. Javanbakht. 2020. “Assessing the physical and empirical reference evapotranspiration (ETo) models and time series analyses of the influencing weather variables on ETo in a semi-arid area.” J. Environ. Manage. 276 (Mar): 111278. https://doi.org/10.1016/j.jenvman.2020.111278.
Al-Ansari, N., N. Adamo, V. Sissakian, S. Knutsson, and J. Laue. 2018. “Water resources of the Tigris River catchment.” J. Earth Sci. Geotech. Eng. 8 (2): 21–42.
Albrecht, F. 1950. “Die methoden zur bestimmung der verdunstung der natürlichen erdoberfläche.” Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B 2 (Jun): 1–38. https://doi.org/10.1007/BF02242718.
Al-Hasani, A. A. 2021. “Trend analysis and abrupt change detection of streamflow variations in the lower Tigris River Basin, Iraq.” Int. J. River Basin Manage. 19 (Oct): 523–534. https://doi.org/10.1080/15715124.2020.1723603.
Al-Hasani, A. A. J., and S. Shahid. 2022. “Spatial distribution of the trends in potential evapotranspiration and its influencing climatic factors in Iraq.” Theor. Appl. Climatol. 150 (1–2): 677–696. https://doi.org/10.1007/s00704-022-04184-4.
Aljumaili, K. K., M. S. Al-Khafaji, and A. T. Al-Awadi. 2014. “Assessment of evapotranspiration estimation models for irrigation projects in Karbala, Iraq.” Eng. Technol. J. 32 (5): 1149–1157. https://doi.org/10.30684/etj.32.5A.6.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998a. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998b. “Introduction to evapotranspiration.” Chap. 6 in Crop evapotranspiration–Guidelines for computing crop water requirements. Irrigation and Drainage Paper, 56. Rome: Food and Agriculture Organization of the United Nations.
Baier, W., and G. W. Robertson. 1965. “Estimation of latent evaporation from simple weather observations.” Can. J. Plant Sci. 45 (3): 276–284. https://doi.org/10.4141/cjps65-051.
Bakr, D. I., J. Al-Khalidi, and A. S. Hadi. 2021. “Comparison of some mathematical models to calculate evapotranspiration in contrasting regions of Iraq.” Environment Asia 14 (2): 40–50. https://doi.org/10.4141/cjps65-051.
Brockamp, B., and H. Wenner. 1963. “Verdunstungsmessungen auf den Steiner see bei münster.” Dt Gewässerkundl Mitt 7 (Aug): 149–154.
Caprio, J. M. 1974. “The solar thermal unit concept in problems related to plant development and potential evapotranspiration.” In Phenology and seasonality modeling, 353–364. Berlin: Springer. https://doi.org/10.1007/978-3-642-51863-8_29.
Dalton, J. 1802. Experimental essays, on the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on the expansion of elastic fluids by heat. Scotch Plains, NJ: R. & W. Dean.
Djaman, K., A. B. Balde, A. Sow, B. Muller, S. Irmak, M. K. N’diaye, B. Manneh, Y. D. Moukoumbi, K. Futakuchi, and K. Saito. 2015. “Evaluation of sixteen reference evapotranspiration methods under Sahelian conditions in the Senegal River Valley.” J. Hydrol.: Reg. Stud. 3 (Mar): 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002.
Djaman, K., K. Koudahe, M. Sall, I. Kabenge, and D. Rudnick. 2017. Performance of twelve mass transfer based reference evapotranspiration models under humid climate. New York: Natural Sciences.
Doorenbos, J., and W. Pruitt. 1977. “Crop water requirements.” In FAO irrigation and drainage paper 24, 144. Rome: Land and Water Development Division, Food and Agriculture Organization of the United Nations.
Droogers, P., and R. G. Allen. 2002. “Estimating reference evapotranspiration under inaccurate data conditions.” Irrig. Drain. Syst. 16 (Mar): 33–45. https://doi.org/10.1023/A:1015508322413.
Earl Harbeck, G., T. J. Nordenson, M. H. Omar, and V. A. Uryvaev. 1966. Measurement and estimation of evaporation and evapotranspiration. Technical Note-83. Geneva: World Meteorological Organization.
Ellenburg, W. L., J. Cruise, and V. P. Singh. 2018. “The role of evapotranspiration in streamflow modeling–An analysis using entropy.” J. Hydrol. 567 (Dec): 290–304. https://doi.org/10.1016/j.jhydrol.2018.09.048.
Gleixner, S., T. Demissie, and G. T. Diro. 2020. “Did ERA5 improve temperature and precipitation reanalysis over East Africa?” Atmosphere 11 (Mar): 996. https://doi.org/10.3390/atmos11090996.
Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez. 2009. “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling.” J. Hydrol. 377 (Mar): 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
Hamed, M. M., N. Khan, M. K. I. Muhammad, and S. Shahid. 2022. “Ranking of empirical evapotranspiration models in different climate zones of Pakistan.” Land 11 (Apr): 2168. https://doi.org/10.3390/land11122168.
Hamon, W. R. 1963. “Computation of direct runoff amounts from storm rainfall.” Int. Assoc. Sci. Hydrol. Publ. 63 (Sep): 52–62.
Hargreaves, G. H., and Z. A. Samani. 1985. “Reference crop evapotranspiration from temperature.” Appl. Eng. Agric. 1 (Mar): 96–99. https://doi.org/10.13031/2013.26773.
Ippolito, M., D. de Caro, G. Ciraolo, M. Minacapilli, and G. Provenzano. 2023. “Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data.” Irrig. Sci. 41 (1): 5–22. https://doi.org/10.1007/s00271-022-00829-4.
Irmak, A., and S. Irmak. 2008. “Reference and crop evapotranspiration in South Central Nebraska. II: Measurement and estimation of actual evapotranspiration for corn.” J. Irrig. Drain. Eng. 134 (Mar): 700–715. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:6(700).
Irmak, S., R. Allen, and E. Whitty. 2003a. “Daily grass and alfalfa-reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida.” J. Irrig. Drain. Eng. 129 (Mar): 360–370. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(360).
Irmak, S., A. Irmak, R. Allen, and J. Jones. 2003b. “Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates.” J. Irrig. Drain. Eng. 129 (Aug): 336–347. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336).
Jensen, M. E., and H. R. Haise. 1963. “Estimating evapotranspiration from solar radiation.” J. Irrig. Drain. Eng. Div. 89 (Mar): 15–41. https://doi.org/10.1061/JRCEA4.0000287.
Jia, X., M. D. Dukes, J. M. Jacobs, and S. Irmak. 2006. “Weighing lysimeters for evapotranspiration research in a humid environment.” Trans. ASABE 49 (Feb): 401–412. https://doi.org/10.13031/2013.20414.
Jiang, S., C. Liang, N. Cui, L. Zhao, T. Du, X. Hu, Y. Feng, J. Guan, and Y. Feng. 2019. “Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China.” Agric. Water Manage. 216 (Apr): 365–378. https://doi.org/10.1016/j.agwat.2019.02.014.
Jones, C. 1990. “Crop growth models.” In Management of farm irrigated systems. St. Joseph, MI: American Society of Agricultural Engineering.
Kharrufa, N. 1985. “Simplified equation for evapotranspiration in arid regions.” Beiträge zur Hydrologie 5 (1): 39–47.
Kisi, O. 2014. “Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate.” J. Irrig. Drain. Eng. 140 (1): 04013002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000664.
Kumar, M., A. Bandyopadhyay, N. Raghuwanshi, and R. Singh. 2008. “Comparative study of conventional and artificial neural network-based ETo estimation models.” Irrig. Sci. 26 (Sep): 531–545. https://doi.org/10.1007/s00271-008-0114-3.
Kumar, R., M. Jat, and V. Shankar. 2012. “Methods to estimate irrigated reference crop evapotranspiration–A review.” Water Sci. Technol. 66 (3): 525. https://doi.org/10.2166/wst.2012.191.
Li, S., G. Wang, S. Sun, D. F. T. Hagan, T. Chen, H. Dolman, and Y. Liu. 2021. “Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010.” J. Hydrol. 595 (Apr): 126037. https://doi.org/10.1016/j.jhydrol.2021.126037.
Linacre, E. T. 1977. “A simple formula for estimating evaporation rates in various climates, using temperature data alone.” Agric. Meteorol. 18 (2): 409–424. https://doi.org/10.1016/0002-1571(77)90007-3.
Mahringer, W. 1970. “Verdunstungsstudien am neusiedler See. Archiv für Meteorologie.” Geophysik und Bioklimatologie, Serie B 18 (1): 1–20. https://doi.org/10.1007/BF02245865.
Makkink, G. 1957. “Testing the Penman formula by means of lysimeters.” J. Inst. Water Eng. 11 (Mar): 277–288.
Martinez, C. J., and M. Thepadia. 2010. “Estimating reference evapotranspiration with minimum data in Florida.” J. Irrig. Drain. Eng. 136 (7): 494–501. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000214.
Mcguinness, J. L., and E. F. Bordne. 1972. A comparison of lysimeter-derived potential evapotranspiration with computed values. Washington, DC: USDA.
Meyer, A. 1926. Über einige zusammenhänge zwischen klima und boden in Europa. Zürich, Switzerland: Eidgenössischen Technischen Hochschule Zurich.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Muhammad, M. K. I., M. S. Nashwan, S. Shahid, T. B. Ismail, Y. H. Song, and E.-S. Chung. 2019. “Evaluation of empirical reference evapotranspiration models using compromise programming: A case study of Peninsular Malaysia.” Sustainability 11 (Aug): 4267. https://doi.org/10.3390/su11164267.
Muniandy, J. M., Z. Yusop, and M. Askari. 2016. “Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum.” Agric. Water Manage. 169 (May): 77–89. https://doi.org/10.1016/j.agwat.2016.02.019.
Muñoz-Sabater, J., E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S., Harrigan, and H. Hersbach. 2021. “ERA5-Land: A state-of-the-art global reanalysis dataset for land applications.” Earth Syst. Sci. Data 13 (9): 4349–4383. https://doi.org/10.5194/essd-13-4349-2021.
Nandagiri, L., and G. M. Kovoor. 2006. “Performance evaluation of reference evapotranspiration equations across a range of Indian climates.” J. Irrig. Drain. Eng. 132 (3): 238–249. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:3(238).
Ngongondo, C., C.-Y. Xu, L. M. Tallaksen, and B. Alemaw. 2013. “Evaluation of the FAO Penman–Montheith, Priestley–Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi.” Hydrol. Res. 44 (4): 706–722. https://doi.org/10.2166/nh.2012.224.
Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne. 2005. “Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling.” J. Hydrol. 303 (1–4): 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
Papadakis, J. 1965. Crop ecologic survey in relation to agricultural development of Western Pakistan. Draft Rep. Rome: Food and Agriculture Organization.
Penman, H. L. 1948. “Natural evaporation from open water, bare soil and grass.” Proc. R. Soc. London, Ser. A 193 (1032): 120–145. https://doi.org/10.1098/rspa.1948.0037.
Pinos, J. 2022. “Estimation methods to define reference evapotranspiration: A comparative perspective.” Water Pract. Technol. 17 (4): 940–948. https://doi.org/10.2166/wpt.2022.028.
Pour, S. H., A. K. Abd Wahab, S. Shahid, and Z. B. Ismail. 2020. “Changes in reference evapotranspiration and its driving factors in peninsular Malaysia.” Atmos. Res. 246 (Dec): 105096. https://doi.org/10.1016/j.atmosres.2020.105096.
Priestley, C. H. B., and R. J. Taylor. 1972. “On the assessment of surface heat flux and evaporation using large-scale parameters.” Mon. Weather Rev. 100 (2): 81–92. https://doi.org/10.1175/1520-0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2.
Ravazzani, G., C. Corbari, S. Morella, P. Gianoli, and M. Mancini. 2012. “Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins.” J. Irrig. Drain. Eng. 138 (Jun): 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453.
Rohwer, C. 1931. Evaporation from free water surfaces. Washington, DC: USDA.
Romanenko, V. 1961. “Computation of the autumn soil moisture using a universal relationship for a large area.” Proc. Ukrainian Hydrometeorological Res. Inst. 3 (Jun): 12–25.
Salehie, O., M. M. Hamed, T. B. Ismail, and S. Shahid. 2022. “Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6.” Theor. Appl. Climatol. 149 (3–4): 1009–1027. https://doi.org/10.1007/s00704-022-04097-2.
Salem, G. S. A., S. Kazama, S. Shahid, and N. C. Dey. 2018. “Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region.” Agric. Water Manage. 208 (Sep): 33–42. https://doi.org/10.1016/j.agwat.2018.06.011.
Salman, S. A., S. Shahid, T. Ismail, K. Ahmed, and X.-J. Wang. 2018a. “Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties.” Atmos. Res. 213 (Nov): 509–522. https://doi.org/10.1016/j.atmosres.2018.07.008.
Salman, S. A., S. Shahid, T. Ismail, E.-S. Chung, and A. M. Al-Abadi. 2017. “Long-term trends in daily temperature extremes in Iraq.” Atmos. Res. 198 (Dec): 97–107. https://doi.org/10.1016/j.atmosres.2017.08.011.
Salman, S. A., S. Shahid, T. Ismail, N. B. A. Rahman, X. Wang, and E.-S. Chung. 2018b. “Unidirectional trends in daily rainfall extremes of Iraq.” Theor. Appl. Climatol. 134 (Nov): 1165–1177. https://doi.org/10.1007/s00704-017-2336-x.
Salman, S. A., S. Shahid, A. Sharafati, G. S. Ahmed Salem, A. Abu Bakar, A. A. Farooque, E.-S. Chung, Y. A. Ahmed, B. Mikhail, and Z. M. Yaseen. 2021. “Projection of agricultural water stress for climate change scenarios: A regional case study of Iraq.” Agriculture 11 (Nov): 1288. https://doi.org/10.3390/agriculture11121288.
Saud, A., M. A. M. Said, R. Abdullah, and A. Hatem. 2014. “Temporal and spatial variability of potential evapotranspiration in semi-arid region: Case study the valleys of western region of Iraq.” Int. J. Eng. Sci. Technol. 6 (9): 653.
Schendel, U. 1967. “Vegetationswasserverbrauch und-wasserbedarf.” Habilitation, Kiel 137 (1): 1–11.
Shahid, S. 2011. “Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh.” Clim. Change 105 (3–4): 433–453. https://doi.org/10.1007/s10584-010-9895-5.
Shiru, M. S., S. Shahid, N. Alias, and E.-S. Chung. 2018. “Trend analysis of droughts during crop growing seasons of Nigeria.” Sustainability 10 (3): 871. https://doi.org/10.3390/su10030871.
Singer, M. B., D. T. Asfaw, R. Rosolem, M. O. Cuthbert, D. G. Miralles, D. Macleod, E. A. Quichimbo, and K. Michaelides. 2021. “Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present.” Sci. Data 8 (1): 1–13. https://doi.org/10.1038/s41597-021-01003-9.
Singh, V., and C. Y. Xu. 1997. “Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation.” Hydrol. Process. 11 (3): 311–323. https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3%3C311::AID-HYP446%3E3.0.CO;2-Y.
Sobh, M. T., M. S. Nashwan, and N. Amer. 2022. “High-resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models.” Int. J. Climatol. 42 (16): 10217–10237. https://doi.org/10.1002/joc.7894.
Szász, G. 1973. “A potenciális párolgás meghatározásának új módszere.” Hidrológiai Közlöny 10 (Sep): 435–442.
Tabari, H., M. E. Grismer, and S. Trajkovic. 2013. “Comparative analysis of 31 reference evapotranspiration methods under humid conditions.” Irrig. Sci. 31 (Mar): 107–117. https://doi.org/10.1007/s00271-011-0295-z.
Thornthwaite, C. W. 1948. “An approach toward a rational classification of climate.” Geogr. Rev. 38 (1): 55–94. https://doi.org/10.2307/210739.
Trabert, W. 1896. “Neue beobachtungen über verdampfungsgeschwindigkeiten.” Meteorol. Z 13 (Apr): 261–263.
Trajkovic, S. 2007. “Hargreaves versus Penman-Monteith under humid conditions.” J. Irrig. Drain. Eng. 133 (1): 38–42. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38).
Trajkovic, S., and S. Kolakovic. 2009. “Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations.” Hydrol. Res. 40 (1): 45–52. https://doi.org/10.2166/nh.2009.002b.
Turc, L. 1961. “Water requirements assessment of irrigation, potential evapotranspiration: Simplified and updated climatic formula.” In Annales agronomiques, 13–49. Paris: L’Institut National de la Recherche Agronomique.
Wang, S., J. Lian, Y. Peng, B. Hu, and H. Chen. 2019. “Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China.” Agric. Water Manage. 221 (Jul): 220–230. https://doi.org/10.1016/j.agwat.2019.03.027.
Wanniarachchi, S., and R. Sarukkalige. 2022. “A review on evapotranspiration estimation in agricultural water management: Past, present, and future.” Hydrology 9 (7): 123. https://doi.org/10.3390/hydrology9070123.
Yang, Y., R. Chen, C. Han, and Z. Liu. 2021. “Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China.” Agric. Water Manage. 244 (Feb): 106545. https://doi.org/10.1016/j.agwat.2020.106545.
Zhang, H., and L. Wang. 2021. “Analysis of the variation in potential evapotranspiration and surface wet conditions in the Hancang River Basin.” China Sci. Rep. 11 (1): 8607. https://doi.org/10.1038/s41598-021-88162-2.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 149Issue 11November 2023

History

Received: Apr 25, 2023
Accepted: Aug 15, 2023
Published online: Sep 15, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 15, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Researcher, Dept. of Water and Environmental Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia; Chief Engineer, Dept. of Agrometeorological Applications and Climate Change, Iraqi Agrometeorological Centre, Ministry of Agriculture, Baghdad 10069, Iraq (corresponding author). ORCID: https://orcid.org/0000-0002-7072-3162. Email: [email protected]
Associate Professor, Dept. of Water and Environmental Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia. ORCID: https://orcid.org/0000-0001-9621-6452. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share