State-of-the-Art Reviews
Mar 29, 2024

A Comprehensive Review of Grouts: Unraveling Biogrout Technologies for Environmental Sustainability and Limitations

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28, Issue 3

Abstract

Using grout in construction and ground improvement has been common in various industries and construction projects. However, conventional grouts often need to be improved for their composition, durability, and environmental impact. Recently, there has been increased interest in exploring alternative solutions that are more sustainable and environmentally friendly. This comprehensive review aims to unravel the limitations of conventional grouts when exploring the potential of emerging biogrout technologies to achieve environmental sustainability in ground improvement. This review begins by examining the characteristics and limitations of traditional grouts, which highlights challenges such as inadequate durability and adverse environmental impacts. Then, the focus shifts toward emerging biogrout technologies, which harness the power of microorganisms to enhance soil stabilization. The principles, applications, and benefits of biogrout technologies are discussed thoroughly, along with case studies that showcase their successful implementation. A key aspect of this review is to highlight the environmental sustainability of biogrout applications in various civil engineering projects. Life cycle analyses (LCAs) are conducted to assess the environmental impacts of conventional grout, which sheds light on their drawbacks. In contrast, the environmental benefits and challenges that are associated with biogrout technologies are examined, which provides a comparative analysis between the two approaches. This review concludes by presenting prospects and challenges in this field. It discusses advances in conventional grout formulations to address their limitations and strategies to enhance the environmental performance of biogrout technologies. In addition, integrating sustainability principles into grouting practices is emphasized to achieve long-term environmental sustainability in ground improvement projects. Overall, this comprehensive review could contribute to the advances in sustainable ground improvement practices by providing insights into the limitations of conventional grouts and exploring the potential of emerging biogrout technologies. It could be a valuable resource for practitioners and researchers who seek sustainable solutions in ground improvement that align with environmental stewardship and sustainable development goals.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during this review appear in the published article.

Acknowledgments

The authors thank Mr. Sanjay Aeron, Director of GEO Constech, East of Kailash, New Delhi, India, for financial assistance [Project No. R&D/SP/CEE/RCG/2022-23/735] in executing this research work. The authors are grateful to the editor and reviewers for their critical remarks, which helped in improving the quality of this paper.

References

Abo-El-Enein, S. A., A. H. Ali, F. N. Talkhan, and H. A. Abdel-Gawwad. 2013. “Application of microbial biocementation to improve the physico-mechanical properties of cement mortar.” HBRC J. 9 (1): 36–40. https://doi.org/10.1016/j.hbrcj.2012.10.004.
Aboulayt, A., F. Souayfan, E. Roziere, R. Jaafri, A. Cherki El Idrissi, R. Moussa, C. Justino, and A. Loukili. 2020. “Alkali-activated grouts based on slag-fly ash mixtures: From early-age characterization to long-term phase composition.” Constr. Build. Mater. 260: 120510. https://doi.org/10.1016/j.conbuildmat.2020.120510.
Achal, V., and S. Kawasaki. 2016. “Biogrout: A novel binding material for soil improvement and concrete repair.” Front. Microbiol. 7: 314. https://doi.org/10.3389/fmicb.2016.00314.
Achal, V., A. Mukerjee, and M. Sudhakara Reddy. 2013. “Biogenic treatment improves the durability and remediates the cracks of concrete structures.” Constr. Build. Mater. 48: 1–5. https://doi.org/10.1016/J.CONBUILDMAT.2013.06.061.
Akyel, A., M. Coburn, A. J. Phillips, and R. Gerlach. 2022. “Key applications of biomineralization.” In Vol. 36, Mineral formation by microorganisms: Concepts and applications, Edited by A. Berenjian, and M. Seifan, 347–387. Cham: Springer. https://doi.org/10.1007/978-3-030-80807-5_10.
Al-Dhalimy, N. A. 2019. Modeling the behavior of microbial induced cemented sands and the response under the penetration of cone tip. Raleigh, NC: North Carolina State University.
Alghamri, R., and A. Al-Tabbaa. 2020. “Self-healing of cracks in mortars using novel PVA-coated pellets of different expansive agents.” Constr. Build. Mater. 254: 119254. https://doi.org/10.1016/j.conbuildmat.2020.119254.
Allan, M. L. 2000. “Materials characterization of superplasticized cement–sand grout.” Cem. Concr. Res. 30 (6): 937–942. https://doi.org/10.1016/S0008-8846(00)00275-1.
Allan, M. L., and L. E. Kukacka. 1995. “Strength and durability of polypropylene fibre reinforced grouts.” Cem. Concr. Res. 25 (3): 511–521. https://doi.org/10.1016/0008-8846(95)00040-J.
Almajed, A., H. Khodadadi Tirkolaei, and E. Kavazanjian. 2018. “Baseline investigation on enzyme-induced calcium carbonate precipitation.” J. Geotech. Geoenviron. Eng. 144 (11): 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973.
Anagnostopoulos, C. A. 2014. “Effect of different superplasticisers on the physical and mechanical properties of cement grouts.” Constr. Build. Mater. 50: 162–168. https://doi.org/10.1016/j.conbuildmat.2013.09.050.
Anagnostopoulos, C. A., G. Sapidis, and E. Papastergiadis. 2016. “Fundamental properties of epoxy resin-modified cement grouts.” Constr. Build. Mater. 125: 184–195. https://doi.org/10.1016/j.conbuildmat.2016.08.050.
Andrejkovičová, S., F. Rocha, I. Janotka, and P. Komadel. 2008. “An investigation into the use of blends of two bentonites for geosynthetic clay liners.” Geotext. Geomembr. 26 (5): 436–445. https://doi.org/10.1016/J.GEOTEXMEM.2008.01.001.
Andrew, R. M. 2018. “Global CO2 emissions from cement production.” Earth Syst. Sci. Data. 10 (1): 195–217. https://doi.org/10.5194/essd-10-195-2018.
Arab, M. G. 2019. “Soil stabilization using calcium carbonate precipitation via urea hydrolysis.” In World Congress on Civil, Structural, and Environmental Engineering. Rome, Italy: CSEE.
Ata, A., and C. Vipulanandan. 1998. “Cohesive and adhesive properties of silicate grout on grouted-sand behavior.” J. Geotech. Geoenviron. Eng. 124 (1): 38–44. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(38).
Azadi, M. R., A. Taghichian, and A. Taheri. 2017. “Optimization of cement-based grouts using chemical additives.” J. Rock Mech. Geotech. Eng. 9 (4): 623–637. https://doi.org/10.1016/J.JRMGE.2016.11.013.
Backes, C. W., H. T. Anker, A. M. Keessen, L. Baaner, and S. Möckel. 2018. Comparison of ammonia regulation in Germany, The Netherlands and Denmark-legal framework. IFRO Report series. Copenhagen, Denmark: Univ. of Copenhagen.
Baharuddin, I. N. Z., R. C. Omar, and Y. Devarajan. 2013. “Improvement of engineering properties of liquefied soil using Bio-VegeGrout.” IOP Conf. Ser.: Earth Environ. Sci. 16: 012104. https://doi.org/10.1088/1755-1315/16/1/012104.
Ball, A. S. 2015. “The intentional release of micro-organisms into the environment: Challenges to commercial use.” In Biosafety and the Environmental Uses of Micro-Organisms: Conf. Proc., 115–126. Paris: OECD Publishing.
Barcelo, L., J. Kline, G. Walenta, and E. Gartner. 2014. “Cement and carbon emissions.” Mater. Struct. 47 (6): 1055–1065. https://doi.org/10.1617/S11527-013-0114-5.
Baumgardner, D. J. 2012. “Soil-Related bacterial and fungal infections.” J. Am. Board Fam. Med. 25 (5): 734–744. https://doi.org/10.3122/jabfm.2012.05.110226.
Berndt, M. 2010. “Strength and permeability of steel fibre reinforced grouts.” Constr. Build. Mater. 24 (9): 1768–1772. https://doi.org/10.1016/J.CONBUILDMAT.2010.02.011.
Bodi, J., Z. Bodi, J. Scucka, and P. Martinec. 2012. “Polyurethane grouting technologies.” Polyurethane 1: 307–336. https://doi.org/10.5772/35791.
Bonacci, O., S. Gottstein, and T. Roje-Bonacci. 2009. “Negative impacts of grouting on the underground karst environment.” Ecohydrology 2 (4): 492–502. https://doi.org/10.1002/eco.90.
Borinaga-Treviño, R., P. Pascual-Muñoz, M. Á. Calzada-Pérez, and D. Castro-Fresno. 2014. “Freeze–thaw durability of cement-based geothermal grouting materials.” Constr. Build. Mater. 55: 390–397. https://doi.org/10.1016/J.CONBUILDMAT.2014.01.051.
Chambers, M., and M. Muecke. 2010. “Biobased products and the LEED® rating system.” J. Green Build. 5 (4): 91–107. https://doi.org/10.3992/jgb.5.4.91.
Chen, X., and V. Achal. 2019. “Biostimulation of carbonate precipitation process in soil for copper immobilization.” J. Hazard. Mater. 368: 705–713. https://doi.org/10.1016/j.jhazmat.2019.01.108.
Cheng, L., and M. A. Shahin. 2019. “Microbially induced calcite precipitation (MICP) for soil stabilization.” In Ecological wisdom inspired restoration engineering, Edited by V. Achal, and A. Mukherjee, 47–68. Singapore: Springer. https://doi.org/10.1007/978-981-13-0149-0_3.
Cherki El Idrissi, A., E. Roziere, A. Loukili, and S. Darson. 2018. “Design of geopolymer grouts: The effects of water content and mineral precursor.” Eur. J. Environ. Civ. Eng. 22 (5): 628–649. https://doi.org/10.1080/19648189.2016.1214183.
Chew, M. C. L. 2010. Maintainability of facilities: For building professionals. Singapore: World Scientific. https://doi.org/10.1142/7566.
Chunxiang, Q., W. Jianyun, W. Ruixing, and C. Liang. 2009. “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii.” Mater. Sci. Eng. C 29 (4): 1273–1280. https://doi.org/10.1016/j.msec.2008.10.025.
Chuo, S. C., S. F. Mohamed, S. H. Mohd Setapar, A. Ahmad, M. Jawaid, W. A. Wani, A. A. Yaqoob, and M. N. Mohamad Ibrahim. 2020. “Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation.” Materials 13 (21): 4993. https://doi.org/10.3390/ma13214993.
Cuzman, O. A., K. Richter, L. Wittig, and P. Tiano. 2015. “Alternative nutrient sources for biotechnological use of Sporosarcina pasteurii.” World J. Microbiol. Biotechnol. 31 (6): 897–906. https://doi.org/10.1007/s11274-015-1844-z.
Da Rocha Gomes, S., L. Ferrara, L. Sánchez, and M. S. Moreno. 2023. “A comprehensive review of cementitious grouts: Composition, properties, requirements and advanced performance.” Constr. Build. Mater. 375: 130991. https://doi.org/10.1016/j.conbuildmat.2023.130991.
David, E., and V.-C. Niculescu. 2021. “Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials.” Int. J. Environ. Res. Public Health 18 (24): 13147. https://doi.org/10.3390/ijerph182413147.
De Muynck, Q., K. Verbeken, N. De Belie, and W. Verstraete. 2010. “Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone.” Ecol. Eng. 36 (2): 99–111. https://doi.org/10.1016/j.ecoleng.2009.03.025.
Decho, A. W. 2010. “Overview of biopolymer-induced mineralization: What goes on in biofilms?” Ecol. Eng. 36 (2): 137–144. https://doi.org/10.1016/J.ECOLENG.2009.01.003.
DeJong, J. T., et al. 2009. Upscaling of bio-mediated soil improvement. Idaho Falls, ID: Idaho National Lab. (INL).
Deng, X., Y. Li, H. Liu, Y. Zhao, Y. Yang, X. Xu, X. Cheng, and B. de Wit. 2021. “Examining energy consumption and carbon emissions of microbial induced carbonate precipitation using the life cycle assessment method.” Sustainability 13 (9): 4856. https://doi.org/10.3390/su13094856.
Dennis, M. L., and J. P. Turner. 1998. “Hydraulic conductivity of compacted soil treated with biofilm.” J. Geotech. Geoenviron. Eng. 124 (2): 120–127. https://doi.org/10.1061/(asce)1090-0241(1998)124:2(120.
Dhami, N. K., S. M. Reddy, and A. Mukherjee. 2012. “Biofilm and microbial applications in biomineralized concrete.” In Advanced topics in biomineralization, Edited by J. Seto, 137–164. Rijeka: InTech.
Doostmohammadi, R., M. Olfati, and F. G. Roodsari. 2017. “Mining pollution control using biogrouting.” J. Min. Sci. 53 (2): 367–376. https://doi.org/10.1134/S1062739117022248.
Dorairaj, D., and N. Osman. 2021. “Present practices and emerging opportunities in bioengineering for slope stabilization in Malaysia: An overview.” PeerJ. 9: e10477. https://doi.org/10.7717/peerj.10477.
Draganović, A., and H. Stille. 2011. “Filtration and penetrability of cement-based grout: Study performed with a short slot.” Tunn. Undergr. Space Technol. 26 (4): 548–559. https://doi.org/10.1016/J.TUST.2011.02.007.
Duan, T., and W. K. Zhu. 2012. “Optimization of calcium carbonate precipitation for Bacillus pasteurii.” Appl. Mech. Mater. 178–181: 676–679. https://doi.org/10.4028/www.scientific.net/AMM.178-181.676.
Edwards, S. J., and B. V. Kjellerup. 2013. “Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals.” Appl. Microbiol. Biotechnol. 97 (23): 9909–9921. https://doi.org/10.1007/s00253-013-5216-z.
El Fantroussi, S., and S. N. Agathos. 2005. “Is bioaugmentation a feasible strategy for pollutant removal and site remediation?” Curr. Opin. Microbiol. 8 (3): 268–275. https://doi.org/10.1016/J.MIB.2005.04.011.
El Mohtar, C. S., J. Yoon, and M. El-Khattab. 2015. “Experimental study on penetration of bentonite grout through granular soils.” Can. Geotech. J. 52 (11): 1850–1860. https://doi.org/10.1139/CGJ-2014-0422.
Esnault Filet, A., I. Gutjahr, A. Garandet, A. Viglino, R. Béguin, J.-M. Monier, L. Oxarango, F. Emeriault, and S. Castanier Perthuisot. 2020. “BOREAL, Bio-reinforcement of embankments by biocalcification.” In Vol. 195 of Proc., Digues Maritimes et Fluviales de Protection contre les Inondations, 1–10. France: IRSTEA.
Etim, R. K., A. O. Eberemu, T. S. Ijimdiya, and K. J. Osinubi. 2023. “Coupled effect of cementation solution, curing period, molding water content, and compactive effort on strength performance of biotreated lateritic soil for municipal solid waste containment application.” J. Hazard. Toxic Radioact. Waste. 27 (3): 04023009. https://doi.org/10.1061/jhtrbp.hzeng-1201.
Fang, C., J. He, V. Achal, and G. Plaza. 2019. “Tofu wastewater as efficient nutritional source in biocementation for improved mechanical strength of cement mortars.” Geomicrobiol. J. 36 (6): 515–521. https://doi.org/10.1080/01490451.2019.1576804.
Farzampour, A. 2017. “Temperature and humidity effects on behavior of grouts.” Adv. Concr. Constr. 5 (6): 659. https://doi.org/10.12989/acc.2017.5.6.659.
Felekoğlu, B. 2008. “Optimization of self-compacting filling grout mixtures for repair purposes.” Constr. Build. Mater. 22 (4): 660–667. https://doi.org/10.1016/J.CONBUILDMAT.2006.10.012.
Figala, P., R. Drochytka, V. Černý, R. Hermann, and J. Kolísko. 2021. “Monitoring of chemical resistance of new grouting materials.” Key Eng. Mater. 898: 27–33. https://doi.org/10.4028/www.scientific.net/KEM.898.27.
Flower, D. J. M., and J. G. Sanjayan. 2007. “Green house gas emissions due to concrete manufacture.” Int J Life Cycle Assess. 12 (5): 282–288. https://doi.org/10.1065/LCA2007.05.327.
Fujita, Y., J. L. Taylor, T. L. T. Gresham, M. E. Delwiche, F. S. Colwell, T. L. McLing, L. M. Petzke, and R. W. Smith. 2008. “Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation.” Environ. Sci. Technol. 42 (8): 3025–3032. https://doi.org/10.1021/ES702643G.
Gat, D., Z. Ronen, and M. Tsesarsky. 2016. “Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation.” Environ. Sci. Technol. 50 (2): 616–624. https://doi.org/10.1021/acs.est.5b04033.
Gilliam, T. M., and J. A. Loflin. 1986. “Leachability studies of hydrofracture grouts.” https://doi.org/10.2172/7066862.
Gouvenot, D. 1998. “State of the art in European grouting.” Proc. Inst. Civ. Eng.: Ground Improv. 2 (2): 51–67. https://doi.org/10.1680/GI.1998.020201.
Gowthaman, S., S. Mitsuyama, K. Nakashima, M. Komatsu, and S. Kawasaki. 2019. “Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan.” Soils Found. 59 (2): 484–499. https://doi.org/10.1016/j.sandf.2018.12.010.
Graddy, C. M. R., M. G. Gomez, J. T. DeJong, and D. C. Nelson. 2021. “Native bacterial community convergence in augmented and stimulated ureolytic MICP biocementation.” Environ. Sci. Technol. 55 (15): 10784–10793. https://doi.org/10.1021/acs.est.1c01520.
Griffin, I. 2004. “Pozzolanas as additives for grouts—An investigation of their working properties and performance characteristics.” Stud. Conserv. 49 (1): 23–34. https://doi.org/10.1179/sic.2004.49.1.23.
Gu, L., T. Bennett, and P. Visintin. 2019. “Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies.” Constr Build Mater. 197: 681–692. https://doi.org/10.1016/j.conbuildmat.2018.11.166.
Güllü, H., A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan. 2019. “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash.” Constr. Build. Mater. 196: 594–610. https://doi.org/10.1016/j.conbuildmat.2018.11.140.
Harkes, M. P., L. A. Van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. Van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
Hlail, S. H., S. Al-Busaltan, and A. M. Shaban. 2020. “Sustainable development of highly flowable cementitious grouts for semi-flexible pavement mixture.” IOP Conf. Ser.: Mater. Sci. Eng. 928 (2): 022068. https://doi.org/10.1088/1757-899X/928/2/022068.
Hovick, T. J., R. D. Elmore, D. K. Dahlgren, S. D. Fuhlendorf, and D. M. Engle. 2014. “REVIEW: Evidence of negative effects of anthropogenic structures on wildlife: A review of grouse survival and behaviour.” J. Appl. Ecol. 51 (6): 1680–1689. https://doi.org/10.1111/1365-2664.12331.
Iamchaturapatr, J., K. Piriyakul, T. Ketklin, G. Di Emidio, and A. Petcherdchoo. 2021. “Sandy soil improvement using MICP-based urease enzymatic acceleration method monitored by real-time system.” Adv. Mater. Sci. Eng. 2021: 1–12. https://doi.org/10.1155/2021/6905802.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Ivanov, V., J. Chu, and V. Stabnikov. 2015. “Basics of construction microbial biotechnology.” In Biotechnologies and biomimetics for civil engineering, edited by F. Pacheco Torgal, J. Labrincha, M. Diamanti, C. P. Yu, and H. Lee, 21–56. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-09287-4_2.
Ivanov, V., and V. Stabnikov. 2016. “Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials.” In Biopolymers and biotech admixtures for eco-efficient construction materials. edited by F. Pacheco-Torgal, V. Ivanov, N. Karak, and H. Jonkers, 13–35. Amsterdam, The Netherlands: Woodhead Publishing/Elsevier Ltd.
Ivanov, V., and V. Stabnikov. 2017. “Bioclogging and biogrouts.” In Green energy and technology, 139–178. Singapore: Springer.
Ivanov, V., and V. Stabnikov. 2020. “Environmental safety of biotechnological materials and processes.” In Bio-Based materials and biotechnologies for Eco-efficient construction, 359–375. Cambridge, UK: Woodhead Publishing.
Ivanov, V., V. Stabnikov, and S. Kawasaki. 2019a. “Ecofriendly calcium phosphate and calcium bicarbonate biogrouts.” J. Clean. Prod. 218: 328–334. https://doi.org/10.1016/j.jclepro.2019.01.315.
Ivanov, V., V. Stabnikov, О Stabnikova, and S. Kawasaki. 2019b. “Environmental safety and biosafety in construction biotechnology.” World J. Microbiol. Biotechnol. 35: 26, https://doi.org/10.1007/s11274-019-2598-9.
Jha, A. K. 2022. “Microbiological processes in improving the behavior of soils for civil engineering applications: A critical appraisal.” J. Hazard. Toxic Radioact. Waste. 26 (2): 03122001. https://doi.org/10.1061/(asce)hz.2153-5515.0000686.
Joshaghani, A., M. A. Moeini, M. Balapour, and A. Moazenian. 2018. “Effects of supplementary cementitious materials on mechanical and durability properties of high-performance non-shrinking grout (HPNSG).” J. Sustain. Cem.-Based Mater. 7 (1): 38–56. https://doi.org/10.1080/21650373.2017.1372318.
Joshi, S., S. Goyal, and M. Sudhakara Reddy. 2021. “Bio-consolidation of cracks with fly ash amended biogrouting in concrete structures.” Constr. Build. Mater. 300: 124044. https://doi.org/10.1016/J.CONBUILDMAT.2021.124044.
Kajaste, R., and M. Hurme. 2016. “Cement industry greenhouse gas emissions—management options and abatement cost.” J. Clean. Prod. 112: 4041–4052. https://doi.org/10.1016/J.JCLEPRO.2015.07.055.
Kakelar, M. M., and S. Ebrahimi. 2016. “Up-scaling application of microbial carbonate precipitation: Optimization of urease production using response surface methodology and injection modification.” Int. J. Environ. Sci. Technol. 13 (11): 2619–2628. https://doi.org/10.1007/s13762-016-1070-8.
Kakelar, M. M., S. Ebrahimi, and M. Hosseini. 2016. “Improvement in soil grouting by biocementation through injection method.” Asia-Pac. J. Chem. Eng. 11 (6): 930–938. https://doi.org/10.1002/apj.2027.
Kaur, G., N. K. Dhami, S. Goyal, A. Mukherjee, and M. S. Reddy. 2016. “Utilization of carbon dioxide as an alternative to urea in biocementation.” Constr Build Mater. 123: 527–533. https://doi.org/10.1016/j.conbuildmat.2016.07.036.
Kavazanjian, E. Jr., and I. Karatas. 2008. Microbiological improvement of the physical properties of soil. Rolla, MO: Missouri University of Science and Technology.
Khayat, K. H., and A. Yahia. 1997. “Effect of welan gum-high-range water reducer combinations on rheology of cement grout.” ACI Mater. J. 94 (5): 365–372. https://doi.org/10.14359/321.
Khodadadi Tirkolaei, H., and H. Bilsel. 2017. “Estimation on ureolysis-based microbially induced calcium carbonate precipitation progress for geotechnical applications.” Mar. Georesources Geotechnol. 35 (1): 34–41. https://doi.org/10.1080/1064119X.2015.1099062.
Koerner, R. M. 2000. “Emerging and future developments of selected geosynthetic applications.” J. Geotech. Geoenviron. Eng. 126 (4): 293–306. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(293).
Konieczna, I., P. Żarnowiec, M. Kwinkowski, B. Kolesińska, J. Frączyk, Z. J. Kamiński, and W. Kaca. 2012. “Bacterial urease and its role in long-lasting human diseases.” Curr. Protein Pept. Sci. 13 (8): 789–806. https://doi.org/10.2174/138920312804871094.
Krauklis, A. E., C. W. Karl, A. I. Gagani, and J. K. Jørgensen. 2021. “Composite material recycling technology—state-of-the-art and sustainable development for the 2020s.” J. Compos. Sci. 5 (1): 28. https://doi.org/10.3390/jcs5010028.
Krauss, P. D., and D. J. Naus. 1998. “Repair materials and techniques for concrete structures in nuclear power plants.” Nucl. Eng. Des. 181 (1–3): 71–89. https://doi.org/10.1016/S0029-5493(97)00336-1.
Kulanthaivel, P., B. Soundara, S. Selvakumar, and A. Das. 2022. “Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand.” Environ. Sci. Pollut. Res. 29 (44): 66450–66461. https://doi.org/10.1007/s11356-022-20484-8.
Kumari, D., and W.-N. Xiang. 2019. “Review on biologically based grout material to prevent soil liquefaction for ground improvement.” Int. J. Geotech. Eng. 13 (1): 48–53. https://doi.org/10.1080/19386362.2017.1318478.
Kunthawatwong, R., L. Sylisomchanh, S. Pangdaeng, A. Wongsa, V. Sata, P. Sukontasukkul, and P. Chindaprasirt. 2022. “Recycled non-biodegradable polyethylene terephthalate waste as fine aggregate in fly ash geopolymer and cement mortars.” Constr. Build. Mater. 328: 127084. https://doi.org/10.3390/su14020737.
Lambert, S. 2013. “Environmental risk of polymer and their degradation products.” Doctoral dissertation, Dept. of Environmental Science, University of York.
Lee, M.-G., W.-C. Wang, Y.-C. Wang, Y.-C. Hsieh, and Y.-C. Lin. 2022. “Mechanical properties of high-strength pervious concrete with steel fiber or glass fiber.” Buildings 12 (5): 620. https://doi.org/10.3390/buildings12050620.
Li, S., C. Luo, Y. Yang, L. Yang, W. Lei, T. Huang, and Z. Wang. 2021. “Effects of biostabilization on engineering properties of geomaterials.” Adv. Civ. Eng. 2021: 1–9. https://doi.org/10.1155/2021/6654213.
Li, S.-C., H.-T. Wang, Q. Wang, B. Jiang, F.-Q. Wang, N.-B. Guo, W.-J. Liu, and Y.-X. Ren. 2016. “Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress.” J. Cent. South Univ. 23 (2): 440–448. https://doi.org/10.1007/S11771-016-3089-X.
Li, X., M. Wang, D. Zheng, H. Fang, F. Wang, and J. Wan. 2023a. “Study on the failure mechanism between polyurethane grouting material and concrete considering the effect of moisture by digital image correlation.” J. Build. Eng. 67: 105948. https://doi.org/10.1016/j.jobe.2023.105948.
Li, Y., J. Bai, L. Liu, X. Wang, Y. Yu, and T. Li. 2022. “Micro and macro experimental study of using the new cement-based self-stress grouting material to solve shrinkage problem.” J. Mater. Res. Technol. 17: 3118–3137. https://doi.org/10.1016/j.jmrt.2022.01.148.
Li, Y., R. Debusschere, Q. Yuan, and J. Li. 2023b. “Recycling of ground jet grouting waste as a supplementary cementitious material.” Resour. Conserv. Recycl. 194: 106993. https://doi.org/10.1016/j.resconrec.2023.106993.
Lian, J., H. Xu, X. He, Y. Yan, D. Fu, S. Yan, and H. Qi. 2019. “Biogrouting of hydraulic fill fine sands for reclamation projects.” Mar. Georesources Geotechnol. 37 (2): 212–222. https://doi.org/10.1080/1064119X.2017.1420115.
Lim, S. K., C. S. Tan, K. P. Chen, M. L. Lee, and W. P. Lee. 2013. “Effect of different sand grading on strength properties of cement grout.” Constr. Build. Mater. 38: 348–355. https://doi.org/10.1016/J.CONBUILDMAT.2012.08.030.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/CGJ-2016-0438.
Liu, J., Y. Chen, and X. Li. 2021. “Geotechnical engineering properties of soils solidified by microbially induced CACO3 precipitation (MICP).” Adv. Civ. Eng. 2021: 1–21. https://doi.org/10.1155/2021/6683930.
Liu, J., X. Li, Y. Chen, and J. Zhang. 2023. “Experimental study on the mechanical behaviors of aeolian sand treated by microbially induced calcite precipitation (MICP) and basalt fiber reinforcement (BFR).” Materials 16 (5): 1949. https://doi.org/10.3390/ma16051949.
Liu, J., Y. Li, G. Zhang, and Y. Liu. 2019. “Effects of cementitious grout components on rheological properties.” Constr. Build. Mater. 227: 116654. https://doi.org/10.1016/j.conbuildmat.2019.08.035.
Lowrey, K. W. 1974. “The use of epoxy resins in civil engineering.” Pigment Resin Technol. 3 (6): 4–5. https://doi.org/10.1108/EB041005.
Luso, E., and P. B. Lourenço. 2017. “Bond strength characterization of commercially available grouts for masonry.” Constr. Build. Mater. 144: 317–326. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.179.
Maddalena, R., J. J. Roberts, and A. Hamilton. 2018. “Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements.” J. Clean. Prod. 186: 933–942. https://doi.org/10.1016/J.JCLEPRO.2018.02.138.
Mahmood, A., A. B. M. Amrul Kaish, S. N. Raman, M. Jamil, and R. Hamid. 2021. “Effects of different expansive agents on the properties of expansive cementitious materials.” IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing 1200 (1): 012002. https://doi.org/10.1088/1757-899X/1200/1/012002.
Martins, R. O. G., R. d. C. S. S. Alvarenga, L. G. Pedroti, A. F. de Oliveira, B. C. Mendes, and A. R. G. de Azevedo. 2018. “Assessment of the durability of grout submitted to accelerated carbonation test.” Constr. Build. Mater. 159: 261–268. https://doi.org/10.1016/J.CONBUILDMAT.2017.10.111.
Matsubara, H. 2021. “Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition.” Eng. Geol. 284: 106044. https://doi.org/10.1016/j.enggeo.2021.106044.
Mays, G. C., and A. R. Hutchinson. 1992. Adhesives in civil engineering. Cambridge, UK: Cambridge University Press.
Mehta, P. K., and P. J. Monteiro. 2014. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill Education.
Mesboua, N., K. Benyounes, and A. Benmounah. 2018. “Study of the impact of bentonite on the physico-mechanical and flow properties of cement grout.” Cogent Eng. 5 (1): 1446252. https://doi.org/10.1080/23311916.2018.1446252.
Mikos, A. P., C. W. W. Ng, and V. P. Faro. 2021. “Sustainable application of fine recycled-concrete aggregate in soil-nailing grout.” J. Mater. Civ. Eng. 33 (8): 04021196. https://doi.org/10.1061/(asce)mt.1943-5533.0003814.
Milling, A., A. Mwasha, and H. Martin. 2020. “Exploring the full replacement of cement with expanded polystyrene (EPS) waste in mortars used for masonry construction.” Constr. Build. Mater. 253: 119158. https://doi.org/10.1016/j.conbuildmat.2020.119158.
Mirza, J., K. Saleh, M.-A. Langevin, S. Mirza, M. A. R. Bhutta, and M. M. Tahir. 2013. “Properties of microfine cement grouts at 4°C, 10°C and 20°C.” Constr. Build. Mater. 47: 1145–1153. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.026.
Mohan, M. K., R. G. Pillai, M. Santhanam, and R. Gettu. 2021. “High-performance cementitious grout with fly ash for corrosion protection of post-tensioned concrete structures.” Constr. Build. Mater. 281: 122612. https://doi.org/10.1016/J.CONBUILDMAT.2021.122612.
Molendijk, W. O., W. H. Van der Zon, and G. A. M. Van Meurs. 2009. “Smartsoils, adaptation of soil properties on demand.” In Vol. 1, 2, 3 and 4 of Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2443–2446. Amsterdam, The Netherlands: Sage Publications.
Mollamahmutoğlu, M., Y. Yılmaz, and İ. Kutlu. 2007. “Grouting performance of microfine cement and silica fume mix into sands.” J. ASTM Int 4 (4): 100462. https://doi.org/10.1520/JAI100462.
Monnot, P., C. Poinclou, P. Blanc, A. Rojo, L. Molez, and C. Lanos. 2019. “Durability evaluation of a geothermal grout.” In CIGOS 2019. Innov. Infrastruct. Solut. Hanoi, Vietnam. Lecture Notes in Civil Engineering.
Montoya, B. M., J. T. DeJong, R. W. Boulanger, D. Wilson, R. Gerhard, A. Ganchenko, and J.-C. Chou. 2012. “Liquefaction mitigation using microbial induced calcite precipitation.” GeoCongress 2012: 1918–1927. https://doi.org/10.1061/9780784412121.197.
Morgan, D. R. 1996. “Compatibility of concrete repair materials and systems.” Constr. Build. Mater. 10 (1): 57–67. https://doi.org/10.1016/0950-0618(95)00060-7.
Mosa, K. A., I. Saadoun, K. Kumar, M. Helmy, and O. P. Dhankher. 2016. “Potential biotechnological strategies for the cleanup of heavy metals and metalloids.” Front. Plant Sci. 7: 303. https://doi.org/10.3389/fpls.2016.00303.
Müller, U., L. Miccoli, and P. Fontana. 2016. “Development of a lime based grout for cracks repair in earthen constructions.” Constr. Build. Mater. 110: 323–332. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.030.
Murata, J., and K. Suzuki. 1997. “New method of testing the flowability of grout.” Mag. Concr. Res. 49 (181): 269–276. https://doi.org/10.1680/MACR.1997.49.181.269.
Naeimi, M., and A. Haddad. 2018. ““Investigation on the environmental impact of soil improvement techniques: Comparison of cement grouting and biocement.” In Proc., GeoShanghai 2018 Int. Conf.: Geoenvironment and Geohazard, 483–490. Singapore: Springer.
Naeimi, M., and A. Haddad. 2020. “Environmental impacts of chemical and microbial grouting.” Environ. Sci. Pollut. Res. 27 (2): 2264–2272. https://doi.org/10.1007/s11356-019-06614-9.
Naveed, M., J. Duan, S. Uddin, M. Suleman, Y. Hui, and H. Li. 2020. “Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil.” Ecol. Eng. 153: 105885. https://doi.org/10.1016/j.ecoleng.2020.105885.
Nayaka, R. R., U. J. Alengaram, R. K. Pancharathi, F. S. Fonseca, M. Sumesh, and A. Banerjee. 2021. “Novel masonry grout incorporating high volumes of industrial by-products: Microstructure characteristics and pursuance of durability properties.” Archit. Struct. Constr 1: 125–142. https://doi.org/10.21203/rs.3.rs-394260/v1.
Nonveiller, E. 2013. “Grouting theory and practice.” Burlington, MA: Elsevier.
Olabi, A., T. Wilberforce, K. Obaideen, E. T. Sayed, N. Shehata, A. H. Alami, and M. A. Abdelkareem. 2023. “Micromobility: Progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals.” Int. J. Thermofluids. 17: 100292. https://doi.org/10.1016/j.ijft.2023.100292.
Omar, R. C., H. Taha, R. Roslan, and I. N. Z. Baharudin. 2018. “Study of bio-grout treated slope models under simulated rainfall.” Int. J. Geomate 14 (43): 154–159. https://geomatejournal.com/geomate/article/download/1701/1580.
Omoregie, A. I., K. Muda, D. E. L. Ong, O. O. Ojuri, M. K. B. Bakri, M. R. Rahman, H. F. Basri, and Y. E. Ling. 2023. “Soil bio-cementation treatment strategies: State-of-the-art review.” Geotech. Res. 40: 1–25. https://doi.org/10.1680/jgere.22.00051.
Omoregie, A. I., E. A. Palombo, D. E. L. Ong, and P. M. Nissom. 2019. “Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method.” Constr Build Mater. 228: 116828. https://doi.org/10.1016/j.conbuildmat.2019.116828.
Onofrei, M., M. N. Gray, W. E. Coons, and S. R. Alcorn. 1992. “High performance cement-based grouts for use in a nuclear waste disposal facility.” Waste Manage. 12 (2–3): 133–154. https://doi.org/10.1016/0956-053X(92)90045-K.
Oreto, C., R. Veropalumbo, N. Viscione, S. A. Biancardo, and F. Russo. 2021. “Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement.” Environ. Res. 198: 111277. https://doi.org/10.1016/j.envres.2021.111277.
Osinubi, K. J., A. O. Eberemu, T. S. Ijimdiya, and P. Yohanna. 2020. “Interaction of landfill leachate with compacted lateritic soil treated with bacillus coagulans using microbial-induced calcite precipitation approach.” J. Hazard. Toxic Radioact. Waste. 24 (1): 04019024. https://doi.org/10.1061/(asce)hz.2153-5515.0000465.
Ou, Y., et al. 2022. “Feasibility studies on the utilization of recycled slag in grouting material for tunneling engineering.” Sustainability 14 (17): 11013. https://doi.org/10.3390/su141711013.
Pachta, V., and D. Goulas. 2020. “Fresh and hardened state properties of fiber reinforced lime-based grouts.” Constr. Build. Mater. 261: 119818. https://doi.org/10.1016/j.conbuildmat.2020.119818.
Pantazopoulos, I. A., I. N. Markou, D. N. Christodoulou, A. I. Droudakis, D. K. Atmatzidis, S. K. Antiohos, and E. Chaniotakis. 2012. “Development of microfine cement grouts by pulverizing ordinary cements.” Cem. Concr. Compos. 34 (5): 593–603. https://doi.org/10.1016/J.CEMCONCOMP.2012.01.009.
Papayianni, I., and V. Pachta. 2015. “Experimental study on the performance of lime-based grouts used in consolidating historic masonries.” Mater. Struct. 48 (7): 2111–2121. https://doi.org/10.1617/S11527-014-0296-5.
Permeh, S., K. Lau, and B. Tansel. 2021. “Moisture and ion mobilization and stratification in post-tensioned (PT) grout during hydration.” Case Stud. Constr. Mater. 15: e00644. https://doi.org/10.1016/j.cscm.2021.e00644.
Perujo, N., A. M. Romaní, and X. Sanchez-Vila. 2019. “A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics.” Sci. Total Environ. 669: 559–569. https://doi.org/10.1016/j.scitotenv.2019.03.126.
Phillips, A. J., R. Gerlach, E. Lauchnor, A. C. Mitchell, A. B. Cunningham, and L. Spangler. 2013a. “Engineered applications of ureolytic biomineralization: A review.” Biofouling 29 (6): 715–733. https://doi.org/10.1080/08927014.2013.796550.
Phillips, A. J., E. Lauchnor, J. J. Eldring, R. Esposito, A. C. Mitchell, R. Gerlach, A. B. Cunningham, and L. H. Spangler. 2013b. “Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation.” Environ. Sci. Technol. 47 (1): 142–149. https://doi.org/10.1021/es301294q.
Phua, Y. J., and A. Røyne. 2018. “Bio-cementation through controlled dissolution and recrystallization of calcium carbonate.” Constr. Build. Mater. 167: 657–668. https://doi.org/10.1016/J.CONBUILDMAT.2018.02.059.
Pineda, P., A. García-Martínez, and D. Castizo-Morales. 2017. “Environmental and structural analysis of cement-based vs. natural material-based grouting mortars. results from the assessment of strengthening works.” Constr Build Mater. 138: 528–547. https://doi.org/10.1016/j.conbuildmat.2017.02.013.
Pletsch, M., B. S. De Araujo, and B. V. Charlwood. 1999. “Novel biotechnological approaches in environmental remediation research.” Biotechnol. Adv. 17 (8): 679–687. https://doi.org/10.1016/S0734-9750(99)00028-2.
Polat, R., R. Demirboğa, and W. H. Khushefati. 2015. “Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar.” Constr. Build. Mater. 81: 268–275. https://doi.org/10.1016/j.conbuildmat.2015.02.032.
Porter, H., A. Mukherjee, R. Tuladhar, and N. K. Dhami. 2021. “Life cycle assessment of biocement: An emerging sustainable solution?” Sustainability 13 (24): 13878. https://doi.org/10.3390/su132413878.
Qian, C. X., A. H. Wang, and X. Wang. 2015. “Advances of soil improvement with bio-grouting.” Rock and Soil Mech. 36 (6): 1537–1548.
Rajendiran, V., and V. K. Stalin. 2013. “Performance assessment of cement grout by incorporating nanomaterials.” In Int. Conf. on Advanced Nanomaterials & Emerging Engineering Technologies, 706–712. Piscataway, NJ: IEEE.
Rajoria, V., and S. Kaur. 2014. “A review on stabilization of soil using bio-enzyme.” Int. J. Eng. Res. Technol. 3 (1): 75–78. https://doi.org/10.15623/IJRET.2014.0301011.
Rostam, S. 1996. “High performance concrete cover—why it is needed, and how to achieve it in practice.” Constr. Build. Mater. 10 (5): 407–421. https://doi.org/10.1016/0950-0618(96)00007-4.
Ryłko-Polak, I., W. Komala, and A. Białowiec. 2022. “The reuse of biomass and industrial waste in biocomposite construction materials for decreasing natural resource use and mitigating the environmental impact of the construction industry: A review.” Materials 15 (12): 4078. https://doi.org/10.3390/ma15124078.
Saladi, N., I. De la Varga, J. F. Munoz, R. Spragg, and B. Graybeal. 2022. “Effects of internal curing on inclusion in prepackaged cementitious grout and ultra-high performance concrete materials.” Sustainability 14 (20): 13067. https://doi.org/10.3390/su142013067.
Seifan, M., A. Ebrahiminezhad, Y. Ghasemi, and A. Berenjian. 2019. “Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: Nanobiotechnological approach.” Bioprocess Biosyst. Eng. 42 (1): 37–46. https://doi.org/10.1007/s00449-018-2011-3.
Sha, F., and P. Liu. 2021. “Development of high-performance microfine cementitious grout with high amount of fly ash, silica fume, and slag.” J. Mater. Civ. Eng. 33 (10): 04021270. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0003853.
Shamsuddoha, M., M. M. Islam, T. Aravinthan, A. Manalo, and K.-T. Lau. 2013. “Characterisation of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines.” Mater. Des. 52: 315–327. https://doi.org/10.1016/J.MATDES.2013.05.068.
Shannag, M. 2002. “High-performance cementitious grouts for structural repair.” Cem. Concr. Res. 32 (5): 803–808. https://doi.org/10.1016/S0008-8846(02)00710-X.
Sharaky, A. M., N. S. Mohamed, M. E. Elmashad, and N. M. Shredah. 2018. “Application of microbial biocementation to improve the physico-mechanical properties of sandy soil.” Constr. Build. Mater. 190: 861–869. https://doi.org/10.1016/j.conbuildmat.2018.09.159.
Sharma, M., N. Satyam, and K. R. Reddy. 2020. “Strength enhancement and lead immobilization of sand using consortia of bacteria and Blue-Green algae.” J. Hazard. Toxic Radioact. Waste. 24 (4): 04020049. https://doi.org/10.1061/(asce)hz.2153-5515.0000548.
Sharma, M., N. Satyam, and K. R. Reddy. 2021. “State of the art review of emerging and biogeotechnical methods for liquefaction mitigation in sands.” J. Hazard. Toxic Radioact. Waste. 25 (1): 03120002. https://doi.org/10.1061/(asce)hz.2153-5515.0000557.
Shashank, B. S., S. Rakshith, J. Joseph, A. Mohammad, and D. N. Singh. 2018. “Flow of microbial suspension through porous media.” In Proc., 1st Geo MEast Int. Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures: Contemporary Issues in Geoenvironmental Engineering. 115–122. Cham, Switzerland: Springer.
Silva, R., J. De Brito, and R. Dhir. 2019. “Use of recycled aggregates arising from construction and demolition waste in new construction applications.” J. Clean. Prod. 236: 117629.
Soleimani, M., and M. Shahandashti. 2017. “Comparative process-based life-cycle assessment of bioconcrete and conventional concrete.” J. Eng. Des. Technol. 15 (5): 667–688. https://doi.org/10.1108/JEDT-04-2017-0033.
Soomro, M., V. W. Y. Tam, and A. C. Jorge Evangelista. 2023. “Production of cement and its environmental impact.” Recycl. Concr. Technol. Perform. 2023: 11–46. https://doi.org/10.1016/B978-0-323-85210-4.00010-2.
Sørensen, J. H., L. C. Hoang, J. F. Olesen, and G. Fischer. 2017. “Tensile capacity of loop connections grouted with concrete or mortar.” Mag. Concr. Res. 69 (17): 892–904. https://doi.org/10.1680/JMACR.16.00466.
Stabnikov, V., and V. Ivanov. 2016. “Biotechnological production of biopolymers and admixtures for eco-efficient construction materials.” In Biopolymers and biotech admixtures for Eco-efficient construction materials, edited by F. P. Torgal, V. Ivanov, N. Karak, and H. Jonker, 37–56. Cambridge, UK: Woodhead Publishing.
Stabnikov, V., and V. Ivanov. 2017. “Biotechnological production of biogrout from iron ore and cellulose.” J. Chem. Technol. Biotechnol. 92 (1): 180–187. https://doi.org/10.1002/jctb.4989.
Suer, P., N. Hallberg, C. Carlsson, D. Bendz, and G. Holm. 2009. “Biogrouting compared to jet grouting: Environmental (LCA) and economical assessment.” J. Environ. Sci. Health A. 44 (4): 346–353. https://doi.org/10.1080/10934520802659679.
Sun, X., H. Liu, Z. Tian, Y. Ma, Z. Wang, and H. Fan. 2021. “Feasibility and economic evaluation of grouting materials containing binary and ternary industrial waste.” Constr Build Mater. 274: 122021. https://doi.org/10.1016/j.conbuildmat.2020.122021.
Suzuki, M., H. Samezawa, I. Yoshitake, and K. Nakagawa. 2002. “A study on penetration mechanism and foaming pressure of urethane grout in the model ground. In proceedings of tunnel engineering.” Jpn. Soc. Civ. Eng. 12: 395–400. https://doi.org/10.11532/JOURNALTE1991.12.395.
Tang, C.-S., L.-Y. Yin, N.-J. Jiang, C. Zhu, H. Zeng, H. Li, and B. Shi. 2020. “Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review.” Environ. Earth Sci. 79 (5): 1–23. https://doi.org/10.1007/s12665-020-8840-9.
Tarczewski, R. 2015. “Formation of sustainable infrastructure using microbial methods and humanization of man-made environment.” Procedia Manuf. 3: 1704–1711. https://doi.org/10.1016/j.promfg.2015.07.991.
Tian, Z., X. Tang, J. Li, Z. Xiu, and Z. Xue. 2021. “Influence of the grouting parameters on microbially induced carbonate precipitation for soil stabilization.” Geomicrobiol. J. 38 (9): 755–767. https://doi.org/10.1080/01490451.2021.1946623.
Toraldo, C., G. Modoni, M. Ochmański, and P. Croce. 2018. “The characteristic strength of jet-grouted material.” Géotechnique 68 (3): 262–279. https://doi.org/10.1680/JGEOT.16.P.320.
TRBA (Technical Rule for Biological Agents). 2010. Classification of prokaryotes (bacteria and archaea) into risk groups, 1428–1667. TRBA 466. Edition, GMBl 2010, No. 68-80 of 06.12. Dortmund, Germany. Federal Institute for Occupational Safety and Health.
Umare M. 2021. Retrofitting and Repairs Techniques AICTE. Nagpur, India: Retrofitting of Concrete Structures.
Valentini, L., S. Contessi, M. C. Dalconi, F. Zorzi, and E. Garbin. 2018. “Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder.” J. Clean. Prod. 184: 41–49. https://doi.org/10.1016/J.JCLEPRO.2018.02.249.
Van Paassen, L. A. 2009. “Biogrout. ground improvement by microbial induced carbonate precipitation.” Ph. D. thesis, Dept. of Biotechnology. Delft Univ Technol.
Van Paassen, L. A., R. Ghose, T. J. M. Van der Linden, W. R. L. Van der Star, and M. C. M. Van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Van Paassen, L. A., M. P. Harkes, G. A. Van Zwieten, W. H. Van der Zon, W. R. L. Van der Star, and M. C. M. Van Loosdrecht. 2009. “Scale up of BioGrout: A biological ground reinforcement method.” In Vol. 1, 2, 3 and 4 of Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2328–2333. Amsterdam, Netherlands: IOS Press. https://doi.org/10.3233/978-1-60750-031-5-2328.
Verma, H., A. Ray, R. Rai, T. Gupta, and N. Mehta. 2021. “Ground improvement using chemical methods: A review.” Heliyon 7 (7): e07678. https://doi.org/10.1016/j.heliyon.2021.e07678.
Vojinovic, V., J. Cabral, and L. Fonseca. 2006. “Real-time bioprocess monitoring.” Sens. Actuators B: Chem. 114 (2): 1083–1091. https://doi.org/10.1016/j.snb.2005.07.059.
Waghmode, M. S., A. B. Gunjal, N. N. Bhujbal, N. N. Patil, and N. N. Nawani. 2019. “Eco-Friendly construction.” In Reusable and sustainable building materials in modern architecture, edited by G. Koc and B. Christiansen, 80–92. Hershey, PA: IGI Global.
Wang, X., W. Wang, Q. Liu, S. Wang, H. Luo, S. Ji, and J. Zhu. 2022. “Effects of metakaolin on sulfate and sulfuric acid resistance of grouting restoration materials.” Constr. Build. Mater. 349: 128714. https://doi.org/10.1016/j.conbuildmat.2022.128714.
Wang, Z., N. Zhang, G. Cai, J. Ye, N. Ding, and D. Shen. 2017. “Review of ground improvement using microbial induced carbonate precipitation (MICP).” Mar. Georesources Geotechnol. 35 (8): 1135–1146. https://doi.org/10.1080/1064119x.2017.1297877.
Warner, J. 2004. Practical handbook of grouting: Soil, rock, and structures. Hoboken, NJ: John Wiley & Sons.
Worrell, E., L. Price, N. Martin, C. Hendriks, and L. O. Meida. 2001. “Carbon dioxide emissions from the global cement industry.” Annual Review of Energy and the Environment. 26 (1): 303–329. https://doi.org/10.1146/annurev.energy.26.1.303.
Wu, Y., H. Li, and Y. Li. 2021. “Biomineralization induced by cells of sporosarcina pasteurii: Mechanisms, applications and challenges.” Microorganisms 9 (11): 2396. https://doi.org/10.3390/microorganisms9112396.
Xu, J., Y. Du, Z. Jiang, and A. She. 2015. “Effects of calcium source on biochemical properties of microbial CaCO3 precipitation.” Front. Microbiol. 6: 1366. https://doi.org/10.3389/fmicb.2015.01366.
Yang, Y., Y. Yang, Q. Wang, and Q. Huang. 2011. “Release of heavy metals from concrete made with cement from cement kiln Co-processing of hazardous wastes in pavement scenarios.” Environ. Eng. Sci. 28 (1): 35–42. https://doi.org/10.1089/ees.2010.0066.
Yang, X., X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo. 2016. “Biomedical applications of terahertz spectroscopy and imaging.” Trends Biotechnol. 34 (10): 810–824. https://doi.org/10.1016/j.tibtech.2016.04.008.
Yavartanoo, F., and T. H.-K. Kang. 2022. “Retrofitting of unreinforced masonry structures and considerations for heritage-sensitive constructions.” J. Build. Eng. 49: 103993. https://doi.org/10.1016/j.jobe.2022.103993.
Yoosathaporn, S., P. Tiangburanatham, S. Bovonsombut, A. Chaipanich, and W. Pathom-Aree. 2016. “A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.” Microbiol. Res. 186–187: 132–138. https://doi.org/10.1016/j.micres.2016.03.010.
Yu, Y., Z. Qin, X. Wang, L. Zhang, D. Chen, and S. Zhu. 2021. “Development of modified grouting material and its application in roadway repair engineering.” Geofluids 2021: 1–15. https://doi.org/10.1155/2021/8873542.
Yuyou, Y., C. Zengdi, L. Xiangqian, and D. Haijun. 2016. “Development and materials characteristics of fly ash- slag-based grout for use in sulfate-rich environments.” Clean Technol. Environ. Policy 18 (3): 949–956. https://doi.org/10.1007/s10098-015-1040-8.
Zebovitz, S., R. J. Krizek, and D. K. Atmatzidis. 1989. “Injection of fine sands with very fine cement grout.” J. Geotech. Eng. 115 (12): 1717–1733. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:12(1717).
Zhang, J. P., L. M. Liu, Q. H. Li, W. Peng, F. T. Zhang, J. Z. Cao, and H. Wang. 2019a. “Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application.” Constr. Build. Mater. 201: 314–327. https://doi.org/10.1016/j.conbuildmat.2018.12.143.
Zhang, K., C.-S. Tang, N.-J. Jiang, X.-H. Pan, B. Liu, Y.-J. Wang, and B. Shi. 2023. “Microbial‐induced carbonate precipitation (MICP) technology: A review on the fundamentals and engineering applications.” Environ. Earth Sci. 82 (9): 229. https://doi.org/10.1007/s12665-023-10899-y.
Zhang, P., M. Li, and Y. Hao. 2017. “Research and application of grouting material in assembled concrete structure.” In Proc., 2017 Global Conf. on Mechanics and Civil Engineering (GCMCE 2017), 169–173. Amsterdam, Netherlands: Atlantis Press.
Zhang, R., M. Long, and J. Zheng. 2019b. “Comparison of environmental impacts of two alternative stabilization techniques on expansive soil slopes.” Adv. Civ. Eng. 2019: 1–13. https://doi.org/10.1155/2019/9454929.
Zhang, S., W. Qiao, Y. Li, K. Xi, and P. Chen. 2019c. “Effect of additives on the rheological and mechanical properties of microfine-cement-based grout.” Adv. Mater. Sci. Eng. 2019: 1–10. https://doi.org/10.1155/2019/1931453.
Zhang, S., W.-G. Qiao, P.-C. Chen, and K. Xi. 2019d. “Rheological and mechanical properties of microfine-cement-based grouts mixed with microfine fly ash, colloidal nanosilica and superplasticizer.” Constr. Build. Mater. 212: 10–18. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.314.
Zhang, W., L. Wang, Y. Song, and Y. Tan. 2021. “Experimental study on the mechanical properties of grouted rock bolts subjected to sulfate attack and freeze-thaw cycling.” Constr. Build. Mater. 291: 123391. https://doi.org/10.1016/j.conbuildmat.2021.123391.
Zhang, Y., H. X. Guo, and X. H. Cheng. 2014. “Influences of calcium sources on microbially induced carbonate precipitation in porous media.” Mater. Res. Innov. 18 (sup2): S2-79–S2-84. https://doi.org/10.1179/1432891714Z.000000000384.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28Issue 3July 2024

History

Received: Oct 6, 2023
Accepted: Jan 2, 2024
Published online: Mar 29, 2024
Published in print: Jul 1, 2024
Discussion open until: Aug 29, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Joyprakash Naskar [email protected]
Junior Research Fellow, Dept. of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihta, Bihar 801106, India. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihta, Bihar 801106, India. (corresponding author). ORCID: https://orcid.org/0000-0002-8559-6354. Email: [email protected]
T. N. Singh [email protected]
Professor, Dept. of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihta, Bihar 801103, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share