Abstract

In bauxite residue (BR), the abatement and rebound of pH when ameliorated with different amendments have been reported as prime concerns. In addition, to the best of the authors’ knowledge, no research has focused on the characterization of BR during the decrease and rebound in pH, which happens over an extended period. This characterization is essential to convert posttreated residue into green construction materials and to affirm that it does not pose a threat to the environment. This study aimed to investigate two important points. The evaluation of the efficacy of commonly and widely employed conventional additives and mineral acids while mitigating the pH of the residue and its characterization included sedimentation and leaching with a change in pH. The uniqueness of this study lay in the exploration of the latter point and pH rebound for ≤180 days. Cement, gypsum (G), fly ash (FA), and ground granulated blast furnace slag (GGBS) as conventional additives, and nitric (HNO3) and hydrochloric acids (HCl) as mineral acids were selected to ameliorate BR. A significant pH rebound with time occurred from 6.59 to 9.51 and 7.54 to 9.78 when treated with 1M HCl and HNO3, which indicated the influence of the curing period and ameliorant on the alkalinity. Conventional additives, except for G, and their combinations proved ineffective when mitigating and maintaining pH within acceptable limits (i.e., 8.5). Settling analysis revealed accelerated particle settling at pH 4.5–7.0, which indicated implications for the safe disposal, washing, or slurry thickening of BR. The extensive leaching studies for potentially toxic elements (PTEs), which were further endorsed with a field case study, demonstrated that the amended residue was environmentally safe to be used as a construction material.

Get full access to this article

View all available purchase options and get full access to this article.

References

Akhurst, D. J., G. B. jones, M. Clark, and D. McConchie. 2006. “Phosphate removal from aqueous solutions using eutralizat bauxite refinery residues (Bauxsol™).” Environ. Chem. 3: 65–74. https://doi.org/10.1071/EN05038.
Alam, S., B. K. Das, and S. K. Das. 2018. “Dispersion and sedimentation characteristics of red mud.” J. Hazard. Toxic Radioact. Waste 22 (4): 04018025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420.
Apua, M. C., and M. S. Madiba. 2021. “Leaching kinetics and predictive models for elements extraction from copper oxide ore in sulphuric acid.” J. Taiwan Inst. Chem. Eng. 121: 313–320. https://doi.org/10.1016/j.jtice.2021.04.005.
Arulrajah, A., J. Piratheepan, M. M. Disfani, and M. W. Bo. 2013. “Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications.” J. Mater. Civ. Eng. 25 (8): 1077–1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652.
ASTM. 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-10. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-11. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for pH of soils. ASTM D4972-13. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test method for elemental analysis of soil and solid waste by monochromatic energy dispersive X-ray fluorescence spectrometry using multiple monochromatic excitation beams. ASTM D8064-16. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard practice for soil exploration and sampling by auger borings. ASTM D1452/D1452M-16. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M-17. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for determining amount of material finer than 75-μm (no. 200) sieve in soils by washing. ASTM D1140-17. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928-17. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard practice for shake extraction of solid waste with water. ASTM D3987-12(2020). West Conshohocken, PA: ASTM.
Barceloux, D. G., and D. Barceloux. 1999. “Copper.” J. Toxicol. Clin. Toxicol. 37 (2): 217–230. https://doi.org/ 10.1081/CLT-100102421.
Barrow, N. J. 1982. “Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soil.” Aust. J. Agric. Res. 33: 285–295. https://doi.org/10.1071/AR9820275.
Bhatnagar, A., V. J. Vilar, C. M. Botelho, and R. A. Boaventura. 2011. “A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater.” Environ. Technol. 32 (3): 231–249. https://doi.org/10.1080/09593330.2011.560615.
Borra, C. R., Y. Pontikes, K. Binnemans, and T. V. Gerven. 2015. “Leaching of rare earths from bauxite residue (red mud).” Miner. Eng. 76: 20–27. https://doi.org/10.1016/j.mineng.2015.01.005.
Burke, I. T., C. L. Peacock, C. L. Lockwood, D. I. Stewart, R. J. Mortimer, M. B. Ward, P. Renforth, K. Gruiz, and W. M. Mayes. 2013. “Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater.” Environ. Sci. Technol. 47 (12): 6527–6535. https://doi.org/10.1021/es4010834.
Cai, Y. B., L. Li, X. F. Wei, G. P. Zhang, H. X. Li, and Z. P. Fu. 2012. “Leaching experiments on the release of trace elements from tailings of Chashan antimony mine, Guangxi, China.” Huan Jing Ke Xue 33 (8): 2840–2848.
Cengeloglu, Y., A. Tor, M. Ersoz, and G. Arslan. 2006. “Removal of nitrate from aqueous phase by using red mud.” Sep. Purif. Technol. 51: 374–378. https://doi.org/10.1016/j.seppur.2006.02.020.
Courtney, R. G., and J. P. Timpson. 2005. “Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum.” Water Air Soil Pollut. 164 (1–4): 91–102. https://doi.org/10.1007/s11270-005-2251-0.
Cui, Y., J. Chen, Y. Zhang, D. Peng, T. Huang, and C. Sun. 2019. “pH-dependent leaching characteristics of major and toxic elements from red mud.” Int. J. Environ. Res. Public Health 16 (11): 2046. https:// doi.org/10.3390/ijerph16112046.
Cusack, P. B., M. G. Healy, P. C. Ryan, I. T. Burke, L. M. O’Donoghue, É Ujaczki, and R. Courtney. 2018. “Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments.” J. Cleaner Prod. 179: 217–224. https://doi.org/10.1016/j.jclepro.2018.01.092.
Disfani, M. M., A. Arulrajah, M. W. Bo, and N. Sivakugan. 2012. “Environmental risks of using recycled crushed glass in road applications.” J. Cleaner Prod. 20 (1): 170–179. https://doi.org/10.1016/j.jclepro.2011.07.020.
Eastmond, D. A., J. T. MacGregor, and R. S. Slesinski. 2008. “Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement.” Crit. Rev. Toxicol. 38 (3): 173–190. https://doi.org/10.1080/10408440701845401.
EC (European Commission). 2000. List of waste. 2000/532/EC. Brussels. Belgium: EC.
EPA. 2010. Waste categorization, industrial waste resource guidelines. Publication No. IWRG 600.2. Melbourne, VIC, Australia: EPA.
EU (European Union). 2008. Directive 2008/98/EC of the European parliament and the council of 19 November 2008 on waste and repealing certain directives. Official Journal 312, 3/30. Maastricht, Netherlands: EU.
Ghosh, I., S. Guha, R. Balasubramaniam, and A. V. Ramesh Kumar. 2011. “Leaching of metals from fresh and sintered red mud.” J. Hazard. Mater. 185 (2–3): 662–668. https://doi.org/10.1016/j.jhazmat.2010.09.069.
Gidley, J. S., and W. A. Sack. 1984. “Environmental aspects of waste utilization in construction.” J. Environ. Eng. 110 (6): 1117–1133. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:6(1117).
Gräfe, M., G. Power, and C. Klauber. 2011. “Bauxite residue issues: III. Alkalinity and associated chemistry.” Hydrometallurgy 108 (1–2): 60–79. https://doi.org/10.1016/j.hydromet.2011.02.004.
Hanahan, C., D. McConchie, J. Pohl, R. Creelman, M. Clark, and C. Stocksiek. 2004. “Chemistry of seawater neutralization of bauxite refinery residues (red mud).” Environ. Eng. Sci. 21 (2): 125–138. https://doi.org/10.1089/109287504773087309.
Hirosue, H., N. Yamada, E. Abe, and H. Tateyama. 1988. “Coagulation of red mud suspension with an inorganic coagulant.” Powder Technol. 54 (1): 27–30. https://doi.org/10.1016/0032-5910(88)80045-7.
Hu, X., X. Guo, M. He, and S. Li. 2016. “pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.” J. Environ. Sci. 44: 171–179. https://doi.org/ 10.1016/j.jes.2016.01.003.
Hua, Y., K. V. Heal, and W. Friesl-Hanl. 2017. “The use of red mud as an eutralizat for metal/metalloid-contaminated soil: A review.” J. Hazard. Mater. 325: 17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073.
Huang, W., S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph, and F. Haghseresht. 2008. “Phosphate removal from wastewater using red mud.” J. Hazard. Mater. 158 (1): 35–42. https://doi.org/10.1016/j.jhazmat.2008.01.061.
Huifen, Y., D. Chunge, L. Wentao, and M. Wen. 2010. “Utilization of red mud for the preparation of lightweight aggregates.” In Vol. 2 of 2010 Int. Conf. On Digital Manufacturing & Automation, 883–886. New York: IEEE.
IRC (Indian Road Congress). 2001. Guidelines for use of fly ash in road embankment. SP 58-2001. New Delhi, India: IRC.
IRC (Indian Road Congress). 2002. Rural roads manual. SP 20-2002. New Delhi, India: IRC.
Kalkan, E. 2006. “Utilization of red mud as a stabilization material for the preparation of clay liners.” Eng. Geol. 87 (3–4): 220–229. https://doi.org/10.1016/j.enggeo.2006.07.002.
Kehagia, F. 2010. “A successful pilot project demonstrating the re-use potential of bauxite residue in embankment construction.” Resour. Conserv. Recycl. 54 (7): 417–421. https://doi.org/10.1016/j.resconrec.2009.10.001.
Khaitan, S., D. A. Dzombak, and G. V. Lowry. 2009. “Neutralization of bauxite residue with acidic fly ash.” Environ. Eng. Sci. 26 (2): 431–440. https://doi.org/10.1089/ees.2007.0232.
Khaitan, S., D. A. Dzombak, P. Swallow, K. Schmidt, J. Fu, and G. V. Lowry. 2010. “Field evaluation of bauxite residue neutralization by carbon dioxide, vegetation, and organic amendments.” J. Environ. Eng. 136 (10): 1045–1053. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000230.
Kim, M., S. Kim, J. Kim, S. Kang, and S. Lee. 2013. “Factors affecting flocculation performance of synthetic polymer for turbidity control.” J. Agric. Chem. Environ. 2 (1): 16–21.
Kirwan, L. J., A. Hartshorn, J. B. McMonagle, L. Fleming, and D. Funnell. 2013. “Chemistry of bauxite residue eutralization and aspects to implementation.” Int. J. Miner. Process. 119: 40–50. https://doi.org/10.1016/j.minpro.2013.01.001.
Klauber, C., M. Gräfe, and G. Power. 2011. “Bauxite residue issues: II. Options for residue utilization.” Hydrometallurgy 108: 11–32. https://doi.org/10.1016/j.hydromet.2011.02.007.
Król, A., K. Mizerna, and M. Bożym. 2020. “An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag.” J. Hazard. Mater. 384: 121502. https://doi.org/10.1016/j.jhazmat.2019.121502.
Kumar, S., and A. Prasad. 2017. “Parameters controlling strength of red mud-lime mix.” Eur. J. Environ. Civ. Eng. 23 (6): 743–757. https://doi.org/10.1080/19648189.2017.1304280.
Kushwaha, S. S., and D. Kishan. 2016. “Stabilization of red mud by lime and gypsum and investigating its possible use in geoenvironmental engineering.” In Geo-Chicago 2016: Sustainable Geoenvironmental Systems, Geotechnical Special Publication 271, edited by A. De, K. R. Reddy, N. Yesiller, D. Zekkos, and A. Farid, 978–988. Reston, VA: AS E.
Li, L. Y. 1998. “Properties of red mud tailings produced under varying process conditions.’.” J. Environ. Eng. 124 (3): 254–264. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(254).
Liang, W., S. J. Couperthwaite, G. Kaur, C. Yan, D. W. Johnstone, and G. J. Millar. 2014. “Effect of strong acids on red mud structural and fluoride adsorption properties.” J. Colloid Interface Sci. 423: 158–165. https://doi.org/10.1016/j.jcis.2014.02.019.
Lockwood, C. L., R. J. Mortimer, D. I. Stewart, W. M. Mayes, C. L. Peacock, D. A. Polya, P. R. Lythgoe, A. P. Lehoux, K. Gruiz, and I. T. Burke. 2014. “Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions.” Appl. Geochem. 51: 268–277. https://doi.org/10.1016/j.apgeochem.2014.10.009.
Mayes, W. M., A. P. Jarvis, I. T. Burke, M. Walton, V. Feigl, O. Klebercz, and K. Gruiz. 2011. “Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary.” Environ. Sci. Technol. 45 (12): 5147–5155. https://doi.org/10.1021/es200850y.
Meecham, J. R., and L. C. Bell. 1977. “Revegetation of alumina refinery wastes. 1. Properties and amelioration of the materials.” Aust. J. Exp. Agric. 17 (87): 679–688. https://doi.org/10.1071/EA9770679.
Menzies, N. W., I. M. Fulton, and W. J. Morrell. 2004. “Seawater neutralization of alkaline bauxite residue and implications for revegetation.” J. Environ. Qual. 33 (5): 1877–1884. https://doi.org/10.2134/jeq2004.1877.
Mishra, C. R., D. Yadav, P. S. Sharma, and M. M. Alli. 2011. “Production of ordinary eutrali cement (OPC) from NALCO red mud.” In Light metals, edited by S. J. Lindsay, 97–102. Cham, Switzerland: Springer.
Mishra, M. C., S. K. Babu, N. G. Reddy, P. P. Dey, and B. H. Rao. 2019. “Performance of lime stabilization on extremely alkaline red mud waste under acidic environment.” J. Hazard. Toxic Radioact. Waste 23 (4): 04019012. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000448.
Mishra, M. C., and B. H. Rao. 2020. “Neutralization of red mud with organic acids and assessment of their usefulness in abating pH rebound.” J. Hazard. Toxic Radioact. Waste 24 (1): 04019026. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000469.
Mishra, M. C., N. G. Reddy, and B. H. Rao. 2020a. “Potential of citric acid for treatment of extremely alkaline bauxite residue: Effect on geotechnical and geoenvironmental properties.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020047. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000541.
Mishra, M. C., N. G. Reddy, B. H. Rao, and S. K. Das. 2020b. “A study on evaluating the usefulness and applicability of additives for neutralizing extremely alkaline red mud waste.” In Sustainable environmental geotechnics, edited by K. R. Reddy, A. K. Agnihotri, Y. Yukselen-Aksoy, B. K. Dubey, and A. Bansal, 139–149. Cham, Switzerland: Springer.
Mukiza, E., L. Zhang, X. Liu, and N. Zhang. 2019. “Utilization of red mud in road base and subgrade materials- A review.” Resour. Conserv. Recycl. 141: 187–199. https://doi.org/10.1016/j.resconrec.2018.10.031.
Ostap, S. 1984. “Effect of bauxite mineralogy on its processing characteristics.” In Proc., Bauxite Symp., edited by L. Jacob, Jr., 651–671. Vienna, Austria: United Nations Industrial Development Organisation (UNIDO).
Paradis, M., J. Duchesne, A. Lamontagne, and D. Isabel. 2007. “Long-term eutralization potential of red mud bauxite with brine amendment for the eutralization of acidic mine tailings.” Appl. Geochem. 22 (11): 2326–2333. https://doi.org/10.1016/j.apgeochem.2007.04.021.
Parekh, B. K., and W. M. Goldberger. 1976. An assessment of technology for possible utilization of Bayer process muds. USEPA-600/2-76-30.1:154. Washington, DC: USEPA.
Pascucci, S., C. Belviso, R. M. Cavalli, A. Palombo, S. Pignatti, and F. Santini. 2012. “Using imaging spectroscopy to map red mud dust waste: The Podgorica Aluminum Complex case study.” Remote Sens. Environ. 123: 139–154. https://doi.org/10.1016/j.rse.2012.03.017.
Pontikes, Y., and G. N. Angelopoulos. 2013. “Bauxite residue in cement and cementitious applications: Current status and a possible way forward.” Resour. Conserv. Recycl. 73: 53–63. https://doi.org/10.1016/j.resconrec.2013.01.005.
Power, G., M. Gräfe, and C. Klauber. 2011. “Bauxite residue issues: I. Current management, disposal and storage practices.” Hydrometallurgy 108 (1–2): 33–45. https://doi.org/10.1016/j.hydromet.2011.02.006.
Qu, Y., B. Lian, B. Mo, and C. Liu. 2013. “Bioleaching of heavy metals from red mud using Aspergillus niger.” Hydrometallurgy 136: 71–77. https://doi.org/10.1016/j.hydromet.2013.03.006.
Rai, S., K. L. Wasewar, J. Mukhopadhyay, C. K. Yoo, and H. Uslu. 2012. “Neutralization and utilization of red mud for its better waste management.” Arch. Environ. Sci. 6 (5410): 13–33.
Rao, B. H., and N. G. Reddy. 2017. “Zeta potential and particle size characteristics of red mud waste.” In Geoenvironmental practices and sustainability. developments in geotechnical engineering, edited by G. S. Babu, K. R. Reddy, A. De, and M. Datta. Singapore: Springer.
RCRA (Resource Conservation and Recovery Act). 1976. Solid waste disposal act (42 U.S.C. 6901 et seq.). Washington, DC: Office of the Law Revision Counsel of the United States House of Representatives.
Reddy, N. G., and B. H. Rao. 2016. “Evaluation of the compaction characteristics of untreated and treated red mud.” In Geo-Chicago 2016: Sustainable Materials and Resource Conservation, Geotechnical Special Publication 272, edited by K. R. Reddy, N. Yesiller, D. Zekkos, A. Farid, and A. De, 23–32. Reston, VA: ASCE.
Reddy, N. G., and B. H. Rao. 2017. “Assessment of dispersion characteristics of red mud waste from physical tests.” In Indian Geotechnical Conf. 2017 GeoNEst. Guwahati, Assam: IIT Guwahati.
Reddy, N. G., and B. H. Rao. 2018. “Compaction and consolidation behaviour of untreated and treated waste of Indian red mud.” Geotech. Res. 5 (2): 106–121. https://doi.org/10.1680/jgere.18.00005.
Reddy, N. G., B. H. Rao, and K. R. Reddy. 2018. “Biopolymer amendment for mitigating dispersive characteristics of red mud waste.” Géotech. Lett. 8 (3): 201–207. https://doi.org/10.1680/jgele.18.00033.
Reddy, P. S., N. G. Reddy, V. Serjun, B. Mohanty, S. K. Das, K. R. Reddy, and B. H. Rao. 2021. “Properties and assessment of applications of red mud (bauxite residue): Current status and research needs.” Waste Biomass Valor 12: 1185–1217. https://doi.org/10.1007/s12649-020-01089-z.
Renforth, P., W. M. Mayes, A. P. Jarvis, I. T. Burke, D. A. C. Manning, and K. Gruiz. 2012. “Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing.” Sci. Total Environ. 421: 253–259. https://doi.org/10.1016/j.scitotenv.2012.01.046.
Ribeiro, D. V., J. A. Labrincha, and M. R. Morelli. 2011. “Potential use of natural red mud as pozzolan for Portland cement.” Mater. Res. 14 (1): 60–66. https://doi.org/10.1590/S1516-14392011005000001.
Sabat, A. K., and S. Mohanta. 2015. “Strength and durability characteristics of stabilized red mud cushioned expansive soil.” Int. J. Appl. Eng. Res. Dev. 10: 25867–25878.
Sahoo, S., and C. Mohanty. 2016. “Construction of road sub-base by using industrial waste.” J. Eng. Sci. Manage. Res. 3: 77–83.
Sahu, R. C., R. K. Patel, and B. C. Ray. 2010. “Neutralization of red mud using CO2 sequestration cycle.” J. Hazard. Mater. 179 (1-3): 28–34. https://doi.org/10.1016/j.jhazmat.2010.02.052.
Sindhuja, D. 2016. “Stabilization of red mud using GGBS and fly ash.” Ph.D. thesis, Department of Civil Engineering, National Institute of Technology Rourkela.
Singh, S. P., S. Samantasinghar, and D. Sindhuja. 2017. “Stabilization of red mud using ground granulated blast furnace slag by geopolymerization technique.” In International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, 338–350. Cham, Switzerland: Springer.
Soltani, A., and A. R. Estabragh. 2015. “Treatment of expansive soils with quality saline pore water by cyclic drying and wetting.” Desert 20 (1): 73–82.
Solymar, K., I. Sajo, J. Steiner, and J. Zoldi. 1992. “Characteristics and separability of red mud.” In Proc., 121st TMS Annual Meeting, 209–223. Pittsburgh: Minerals, Metals and Materials Society.
Sridevi, G., S. Sahoo, and S. Sen. 2019. “Stabilization of expansive soil with red mud and lime.” In Ground improvement techniques and geosynthetics, edited by T. Thyagaraj, 259–268. Singapore: Springer.
Sutar, H., S. C. Mishra, S. K. Sahoo, A. P. Chakraverty, and H. S. Maharana. 2014. “Progress of red mud utilization: An overview.” Am. Chem. Sci. J. 4 (3): 255–279. https://doi.org/10.9734/ACSJ/2014/7258.
Urík, M., M. Bujdoš, B. Milová-Žiaková, P. Mikušová, M. Slovák, and P. Matúš. 2015. “Aluminium leaching from red mud by filamentous fungi.” J. Inorg. Biochem. 152: 154–159. https://doi.org/10.1016/j.jinorgbio.2015.08.022.
USEPA. 1996. Acid digestion of sediments, sludges and soils. Test Methods for evaluating solid wastes: Physical/chemical methods. EPA SW-846 (1), 3050B-1. Washington, DC: USEPA.
USEPA. 2009. National summary of impaired waters and TMDL information. Washington, DC: USEPA.
USEPA. 2012. Edition of the drinking water standards and health advisories. EPA 822-S-12-001. Washington, DC: USEPA.
USEPA. 2022. Toxicity characteristic leaching procedure (TCLP). SW-846 Test Method 1311. Washington, DC: USEPA.
Wang, T., J. Wang, J. Burken, and H. Ban. 2005. “The leaching behavior of arsenic from fly ash.” In Proc., World of Coal Ash. Lexington, KY: University of Kentucky Center for Applied Energy Research and the American Coal Ash Association.
Wartman, J., D. G. Grubb, and A. S. M. Nasim. 2004. “Select engineering characteristics of crushed glass.” J. Mater. Civ. Eng. 16 (6): 526–539. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(526).
WHO (World Health Organization). 2011. Guidelines for drinking water quality, 104–108. WHO Chron 4(38). Geneva: WHO.
Wong, J. W. V., and G. E. Ho. 1991. “Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue.” Soil Sci. 152 (5): 326–332. https://doi.org/10.1097/00010694-199111000-00003.
Zhang, J., S. Liu, Z. Yao, S. Wu, H. Jiang, M. Liang, and Y. Qiao. 2018. “Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture.” Constr. Build. Mater. 180: 605–613. https://doi.org/10.1016/j.conbuildmat.2018.05.268.
Zhao, Y., Q. Yue, Q. Li, X. Xu, Z. Yang, X. Wang, B. Gao, and H. Yu. 2012. ‘“Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution.”’ Chem. Eng. J. 193: 161–168. https://doi.org/10.1016/j.cej.2012.04.040.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 2April 2023

History

Received: Apr 16, 2022
Accepted: Oct 20, 2022
Published online: Dec 26, 2022
Published in print: Apr 1, 2023
Discussion open until: May 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, School of Infrastructure, IIT Bhubaneswar, Khordha 752050, Odisha, India. ORCID: https://orcid.org/0000-0002-6094-0980. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Kakatiya Institute of Technology and Science, Warangal 506015, Telangana, India. ORCID: https://orcid.org/0000-0002-1302-1017. Emails: [email protected]; [email protected]
Associate Professor, School of Infrastructure, IIT Bhubaneswar, Khordha 752050, Odisha, India (corresponding author). ORCID: https://orcid.org/0000-0002-5136-6198. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share