Abstract

The Nikuradse roughness height for a river channel or, equivalently, the friction factor (f) or Manning’s coefficient, are parameters required to calibrate hydrodynamic models used for flood risk management. In general, modeling hydraulic roughness includes the contributions of skin friction, related to sediment grain size, and bed-form roughness, related to bed-form geometry. Frequently, bed-form resistance is larger than the resistance due to skin friction. An empirical approach has been presented in the literature to estimating bed-form roughness, which is widely used for engineering purposes. This contribution presents an alternative physically based formulation for dune roughness estimation. Flow resistance generated by the bed form is assumed to arise from the drag force exerted by the bed, based on depth-averaged flow quantities. The new formulation agrees with existing experimental laboratory results and new field data from the Tercero (Ctalamochita) River, Córdoba, Argentina.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge Professor Marcelo H. Garcia of the University of Illinois at Urbana-Champaign for the inputs regarding the use of other velocity profile (Christensen velocity profile) and Kevin Oberg (retired USGS) for the recommendations for ADCP data collection and a technical edit of this paper. The authors also acknowledge financial support [Grant BID PICT2019 02423 of Fondo para la Investigación Científica y Tecnológica (FONCyT) de la Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT)].

References

Bradley, R. W., and J. G. Venditti. 2017. “Reevaluating dune scaling relations.” Earth Sci. Rev. 165 (Jun): 356–376. https://doi.org/10.1016/j.earscirev.2016.11.004.
Chen, C. L. 1991. “Unified theory on power laws for flow resistance.” J. Hydraul. Eng. 117 (3): 371–389. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(371).
Chow, V. T. 1959. Open-channel hydraulics. Tokyo: McGraw-Hill.
Dancey, C. L., and P. Diplas. 2008. “Statistical uncertainty and the estimation of log law parameters.” J. Hydraul. Eng. 134 (9): 1353–1356. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1353).
Díaz Lozada, J. M. 2019. “Avances en la cuantificación hidrológica y caracterización hidráulica del flujo en el sistema fluvial del Río Carcarañá utilizando ADCP (Advances in hydrological quantification and hydraulic characterization of the flow in the Carcarañá River system using ADCP).” Doctoral thesis, Facultad de Ciencias Exactas, Físicas y Naturales, FCEFyN, Universidad Nacional de Córdoba.
Dimas, A. A., N. T. Fourniotis, A. P. Vouros, and A. C. Demetracopoulos. 2008. “Effect of bed dunes on spatial development of open-channel flow.” J. Hydraul. Res. 46 (6): 802–813. https://doi.org/10.1080/00221686.2008.9521924.
Driegen, J. 1986. Flume experiments on dunes under steady flow conditions (uniform sand, dm = 0.77 mm): Description of bed forms. Rep. No. 567. Delft, Netherlands: WL Delft Hydraulics.
Einstein, H. A. 1950. The bedload function for bedload transportation in open channel flows, 1–71. Washington, DC: USDA.
Einstein, H. A., and N. L. Barbarossa. 1952. “River channel roughness.” Trans. Am. Soc. Civ. Eng. 117 (1): 1121–1132. https://doi.org/10.1061/TACEAT.0006666.
Engelund, F. 1966. “Hydraulic resistance of alluvial streams.” J. Hydraul. Div. 92 (2): 315–326. https://doi.org/10.1061/JYCEAJ.0001417.
Engelund, F., and E. Hansen. 1967. “A monograph on sediment transport in alluvial streams.” Accessed September 27, 2022. http://resolver.tudelft.nl/uuid:81101b08-04b5-4082-9121-861949c336c9.
Fang, H., L. Huang, H. Zhao, W. Cheng, Y. Chen, M. Fazeli, and Q. Shang. 2020. Mechanics of bio-sediment transport. Berlin: Springer.
Fredsoe, J. 1982. “Shape and dimensions of stationary dunes in rivers.” J. Hydraul. Div. 108 (8): 932–947. https://doi.org/10.1061/JYCEAJ.0005896.
Fredsoe, J., and R. Deigaard. 1992. “Mechanics of coastal sediment transport.” In Advanced series on ocean engineering. 1st ed. Singapore: World Scientific.
Friedrich, H., A. J. Paarlberg, and J. Lansink. 2007. “Evaluation of statistical properties of dune profiles.” In Vol. 2 of Proc., 5th IAHR Symp. on River, Coastal and Estuarine Morphodynamics, edited by C. M. Dohmen-Janssen and S. J. M. H. Hulscher, 913–921. London: Taylor and Francis.
Garcia, M. 2008. Sedimentation engineering: Processes, measurements, modeling, and practice. Reston, VA: ASCE.
Guy, H. P., D. B. Simons, and E. V. Richardson. 1966. Summary of alluvial channel data from flume experiments. Washington, DC: US Government Printing Office.
Heredia A. I. 2017. “Caracterización del trasporte de sedimentos en un tramo del río Tercero (Ctalamochita) utilizando tecnología acústica Doppler (Characterization of sediment transport on a section of Tercero (Ctalamochita) River using Doppler Acoustic Technology).” Master’s thesis, Dept. of Hydraulics, Universidad Nacional de Córdoba.
Holmes, R. R., Jr., and M. H. Garcia. 2008. “Flow over bedforms in a large sand-bed river: A field investigation.” J. Hydraul. Res. 46 (3): 322–333. https://doi.org/10.3826/jhr.2008.3040.
Julien, P. Y. 2010. Erosion and sedimentation. Cambridge, UK: Cambridge University Press.
Latosinski, F. G., R. N. Szupiany, M. Guerrero, M. L. Amsler, and C. Vionnet. 2017. “The ADCP’s bottom track capability for bedload prediction: Evidence on method reliability from sandy river applications.” Flow Meas. Instrum. 54 (Apr): 124–135. https://doi.org/10.1016/j.flowmeasinst.2017.01.005.
Lefebvre, A., and C. Winter. 2016. “Predicting bed form roughness: The influence of lee side angle.” Geo-Mar. Lett. 36 (2): 121–133. https://doi.org/10.1007/s00367-016-0436-8.
Mays, L. W. 1999. Hydraulic design handbook. New York: McGraw-Hill.
McLean, S. R., V. I. Nikora, and S. E. Coleman. 2008. “Double-averaged velocity profiles over fixed dune shapes.” Acta Geophys. 56 (Jun): 669–697. https://doi.org/10.2478/s11600-008-0031-0.
Mueller, D. S., C. R. Wagner, M. S. Rehmel, K. A. Oberg, and F. Rainville. 2013. Measuring discharge with acoustic Doppler current profilers from a moving boat (v. 2.0, December 2013), 95. Reston, VA: USGS. https://doi.org/10.3133/tm3A22.
Muste, M., D. A. Lyn, D. Admiraal, R. Ettema, V. Nikora, and M. H. García. 2017. Experimental hydraulics: Methods, instrumentation, data processing and management: Volume I: Fundamentals and methods. London: CRC Press.
Nelson, J. M., S. R. McLean, and S. R. Wolfe. 1993. “Mean flow and turbulence fields over two-dimensional bed forms.” Water Resour. Res. 29 (12): 3935–3953. https://doi.org/10.1029/93WR01932.
Nelson, J. M., and J. D. Smith. 1989. “Flow in meandering channels with natural topography.” In River meandering, edited by S. Ikeda and G. Parker, 69–102. Washington, DC: American Geophysical Union.
Paarlberg, A. J., C. M. Dohmen-Janssen, S. J. Hulscher, and P. Termes. 2009. “Modeling river dune evolution using a parameterization of flow separation.” J. Geophys. Res. Earth Surf. 114 (1): 9. https://doi.org/10.1029/2007JF000910.
Paarlberg, A. J., C. M. Dohmen-Janssen, S. J. Hulscher, P. Termes, and R. Schielen. 2010. “Modelling the effect of time-dependent river dune evolution on bed roughness and stage.” Earth Surf. Process. Landf. 35 (15): 1854–1866. https://doi.org/10.1002/esp.2074.
Patalano, A., A. I. Heredia Ligorria, J. M. Diaz Lozada, and C. M. García. 2022. “Image-based migration velocity and dune length in clear water rivers.” Flow Meas. Instrum. 86 (2): 102174. https://doi.org/10.1016/j.flowmeasinst.2022.102174.
Plott, J. R., P. Diplas, J. Kozarek, C. L. Dancey, C. Hill, and F. Sotiropoulos. 2013. “A generalized log law formulation for a wide range of boundary roughness typically encountered in natural streams.” J. Geophys. Res. Earth Surf. 118 (3): 1419–1431. https://doi.org/10.1002/jgrf.20104.
Rodi, W., G. Constantinescu, and T. Stoesser. 2013. Large-eddy simulation in hydraulics. London: CRC Press.
Schippa, L., S. Cilli, P. Ciavola, and P. Billi. 2019. “Dune contribution to flow resistance in alluvial rivers.” Water 11 (10): 2094. https://doi.org/10.3390/w11102094.
Shen, H. W. 1972. Sedimentation symposium to honor Professor H.A. Einstein. Fort Collins, CO: Colorado State Univ.
Shen, H. W., H. M. Fehlman, and C. Mendoza. 1990. “Bed form resistances in open channel flows.” J. Hydraul. Eng. 116 (6): 799–815. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:6(799).
Smith, J. D., and S. R. McLean. 1977. “Spatially averaged flow over a wavy surface.” J. Geophys. Res. 82 (12): 1735–1746. https://doi.org/10.1029/JC082i012p01735.
Terwisscha van Scheltinga, R. C., G. Coco, and H. Friedrich. 2021. “Sediment particle velocity and activity during dune migration.” Water Resour. Res. 57 (Apr): e2020WR029017. https://doi.org/10.19/2020WR02901702.
Van Rijn, L. C. 1984. “Sediment transport, Part III: Bed forms.” J. Hydraul. Eng. 110 (12): 1733. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733).
Venditti, J. G., M. A. Church, and S. J. Bennett. 2005. “Bed form initiation from a flat sand bed.” J. Geophys. Res. 110 (Mar): F01009. https://doi.org/10.1029/2004JF000149.
White, F. M. 1979. Fluid mechanics. New York: McGraw-Hill.
White, W. R., E. Paris, and R. Bettess. 1980. “The fictional characteristics of alluvial streams: A new approach.” Proc. Inst. Civ. Eng. 69 (2): 737–750. https://doi.org/10.1680/iicep.1980.2374.
Wright, S., and P. Parker. 2004. “Flow resistance and suspended load in sand-bed rivers: Simplified stratification model density.” J. Hydraul. Eng. 130 (8): 796–805. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(796).
Yalin, S. 1964. “On the average velocity of flow over a movable bed.” La Houille Blanche 1 (1): 45–51. https://doi.org/10.1051/lhb/1964004.
Yang, S. Q., S. K. Tan, and S. Y. Lim. 2005. “Flow resistance and bed form geometry in a wide alluvial channel.” Water Resour. Res. 41 (Sep): 9. https://doi.org/10.1029/2005WR004211.
Yen, B. C. 2002. “Open channel flow resistance.” J. Hydraul. Eng. 128 (1): 20–39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20).

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 150Issue 4July 2024

History

Received: May 10, 2023
Accepted: Jan 4, 2024
Published online: Mar 26, 2024
Published in print: Jul 1, 2024
Discussion open until: Aug 26, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Researcher, National Water Institute–Centre for Studies of Semi-Arid Region (CIRSA INA/CONICET), Medrano 235, Villa Carlos Paz, Córdoba X5152MCE, Argentina; Assistant Professor, School of Exact, Physical, and Natural Sciences (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba X5016GCA, Argentina (corresponding author). ORCID: https://orcid.org/0000-0002-6735-0916. Email: [email protected]
Professor, School of Engineering, Institute of Fluid Mechanics and Environmental Engineering (IMFIA), Universidad de la República, Montevideo 11300, Uruguay. ORCID: https://orcid.org/0000-0002-3552-5072. Email: [email protected]
Carlos M. García [email protected]
Professor, Institute for Advanced Studies for Engineering and Technology (IDIT CONICET/UNC), School of Exact, Physical, and Natural Sciences (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina. Email: [email protected]
Ana. I Heredia Ligorria [email protected]
Researcher, National Water Institute–Centre for Studies of Semi-Arid Region (CIRSA INA/CONICET), Medrano 235, Villa Carlos Paz, Córdoba X5152MCE, Argentina; Assistant Professor, School of Exact, Physical, and Natural Sciences (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba X5016GCA, Argentina. Email: [email protected]
Roman Martino [email protected]
Assistant Professor, Institute for Advanced Studies for Engineering and Technology (IDIT CONICET/UNC), School of Exact, Physical, and Natural Sciences (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share