Abstract

Two- and three-dimensional analyses of transient flows considering the air–water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air–water dynamic interaction of emptying processes can be analyzed using thermodynamic and hydraulic laws. There is a lack in the current literature regarding the analysis of those phenomena using 3D models. In this research, several simulations were performed to study the complex details of two-phase flows. A 3D model was proposed to represent the emptying process in a single pipeline, considering a PVoF model and two-equation turbulence model. The model was numerically validated through 12 experimental tests and mesh sensitivity analysis. The pressure pulses of the air pockets were evaluated and compared with the experimental results and existing mathematical models, showing how the 3D models are useful for capturing more detailed information, such as pressure and velocity patterns of discrete air pockets, distribution of air and water velocity contours, and the exploration of temperature changes for an air pocket expansion.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request (experimental and numerical results).

Acknowledgments

The authors thank to the Universidad Tecnológica de Bolívar for the financial support with the Award No. INV03CI2214.

References

Aguirre-Mendoza, A. M., S. Oyuela, H. G. Espinoza-Román, O. E. Coronado-Hernández, V. S. Fuertes-Miquel, and D. A. Paternina-Verona. 2021. “2D CFD modeling of rapid water filling with air valves using OpenFOAM.” Water 13 (21): 3104. https://doi.org/10.3390/w13213104.
Aguirre-Mendoza, A. M., D. A. Paternina-Verona, S. Oyuela, O. E. Coronado-Hernández, M. Besharat, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, and H. M. Ramos. 2022. “Effects of orifice sizes for uncontrolled filling processes in water pipelines.” Water 14 (6): 888. https://doi.org/10.3390/w14060888.
AWWA (American Water Works Association). 2016. Air release, air/Vacuum valves and combination air valves (M51). Denver: AWWA.
Baines, W. D. 1991. “Air cavities as gravity currents on slope.” J. Hydraul. Eng. 117 (12): 1600–1615. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:12(1600).
Bentley. 2021. Bentley OpenFlows HAMMER CONNECT edition help. Exton, PA: Bentley.
Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2018. “Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket.” Urban Water J. 15 (8): 769–779. https://doi.org/10.1080/1573062X.2018.1540711.
Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2019. “Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage.” J. Hydraul. Res. 58 (4): 553–565. https://doi.org/10.1080/00221686.2019.1625819.
Bombardelli, F. A., C. Hirt, M. H. García, B. Matthews, C. Fletcher, A. Partridge, and S. Vasquez. 2001. “Computations of curved free surface water flow on spiral concentrators.” J. Hydraul. Eng. 127 (7): 629–631. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:7(629).
Chosie, C. D., T. M. Hatcher, and J. G. Vasconcelos. 2014. “Experimental and numerical investigation on the motion of discrete air pockets in pressurized water flows.” J. Hydraul. Eng. 140 (8): 04014038. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000898.
Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2017. “Experimental and numerical analysis of a water emptying pipeline using different air valves.” Water 9 (2): 92–98. https://doi.org/10.3390/w9020098.
Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2018a. “Subatmospheric pressure in a water draining pipeline with an air pocket.” Urban Water J. 15 (4): 346–352. https://doi.org/10.1080/1573062X.2018.1475578.
Coronado-Hernández, O. E., V. S. Fuertes-Miquel, P. L. Iglesias Rey, and F. J. Martínez-Solano. 2018b. “Rigid water column model for simulating the emptying process in a pipeline using pressurized air.” J. Hydraul. Eng. 144 (4): 06018004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001446.
Coronado-Hernández, Ó. E. 2019. “Transient phenomena during the emptying process of water in pressurized pipelines.” Ph.D. thesis, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València.
Fang, H., L. Zhou, Y. Cao, F. Cai, and D. Liu. 2022. “3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system.” Urban Water J. 19 (1): 74–86.
Fuertes, V. 2001. “Hydraulic transients with entrapped air pockets.” Ph.D. thesis, Dept. of Hydraulic Engineering, Polytechnic Univ. of Valencia.
Fuertes-Miquel, V. S., O. E. Coronado-Hernández, P. L. Iglesias-Rey, and D. Mora-Meliá. 2019a. “Transient phenomena during the emptying process of a single pipe with water–air interaction.” J. Hydraul. Res. 57 (3): 318–326. https://doi.org/10.1080/00221686.2018.1492465.
Fuertes-Miquel, V. S., O. E. Coronado-Hernández, D. Mora-Meliá, and P. L. Iglesias-Rey. 2019b. “Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review.” Urban Water J. 16 (4): 299–311. https://doi.org/10.1080/1573062X.2019.1669188.
Fuertes-Miquel, V. S., P. A. López-Jiménez, F. J. Martínez-Solano, and G. López-Patiño. 2016. “Numerical modelling of pipelines with air pockets and air valves.” Can. J. Civ. Eng. 43 (12): 1052–1061. https://doi.org/10.1139/cjce-2016-0209.
Greenshields, C., and H. Weller. 2022. Notes on computational fluid dynamics: General principles. Reading, UK: Computational Fluid Dynamics Direct.
Hirt, C. W., and B. D. Nichols. 1981. “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys. 39 (1): 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Hurtado-Misal, A. D., D. Hernández-Sanjuan, O. E. Coronado-Hernández, H. Espinoza-Román, and V. S. Fuertes-Miquel. 2021. “Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2D CFD model.” Water 13 (18): 2526. https://doi.org/10.3390/w13182526.
Issa, R. I. 1986. “Solution of the implicitly discretised fluid flow equations by operator-splitting.” J. Comput. Phys. 62 (1): 40–65. https://doi.org/10.1016/0021-9991(86)90099-9.
ITA (Instituto Tecnológico del Agua). 2018. Allievi users manual. Valencia, Spain: Polytechnic Univ. of Valencia.
Jasak, H., and H. Weller. 1995. Interface tracking capabilities of the inter-gamma differencing scheme. London: Imperial College of Science, Technology and Medicine.
Laanearu, J., I. Annus, T. Koppel, A. Bergant, S. Vučković, Q. Hou, A. S. Tijsseling, A. Anderson, and J. M. van’t Westende. 2012. “Emptying of large-scale pipeline by pressurized air.” J. Hydraul. Eng. 138 (12): 1090–1100. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000631.
Laanearu, J., Q. Hou, I. Annus, and A. S. Tijsseling. 2015. “Water-column mass losses during the emptying of a large-scale pipeline by pressurized air.” In Proc., Estonian Academy of Sciences, 8. Tallinn, Estonia: Estonian Academy.
Launder, B. E., and D. B. Spalding. 1983. “The numerical computation of turbulent flows.” In Numerical prediction of flow, heat transfer, turbulence and combustion, 96–116. Amsterdam, Netherlands: Elsevier.
Liou, C. P., and W. A. Hunt. 1996. “Filling of pipelines with undulating elevation profiles.” J. Hydraul. Eng. 122 (10): 534–539. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(534).
Martin, C. S. 1976. “Entrapped air in pipelines.” In Proc., 2nd Int. Conf. on Pressure Surges. Bedford, UK: British Hydromechanics Research Association Fluid Engineering.
Martins, N. M., J. N. Delgado, H. M. Ramos, and D. I. Covas. 2017. “Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model.” J. Hydraul. Res. 55 (4): 506–519. https://doi.org/10.1080/00221686.2016.1275046.
Menter, F. R. 1994. “Two-equation eddy-viscosity turbulence models for engineering applications.” AIAA J. 32 (8): 1598–1605. https://doi.org/10.2514/3.12149.
Menter, F. R. 2009. “Review of the shear-stress transport turbulence model experience from an industrial perspective.” Int. J. Comput. Fluid Dyn. 23 (4): 305–316. https://doi.org/10.1080/10618560902773387.
Menter, F. R., and T. Esch. 2001. “Elements of industrial heat transfer predictions.” In Proc., 16th Brazilian Congress of Mechanical Engineering (COBEM). Rio de Janeiro, Brazil: Brazilian Society of Mechanical Sciences.
Muralha, A., J. F. Melo, and H. M. Ramos. 2020. “Assessment of CFD solvers and turbulent models for water free jets in spillways.” Fluids 5 (3): 104. https://doi.org/10.3390/fluids5030104.
Paternina-Verona, D. A., O. E. Coronado-Hernández, and V. S. Fuertes-Miquel. 2022. “Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.” Urban Water J. 19 (6): 569–578. https://doi.org/10.1080/1573062X.2022.2050929.
Pozos, O., C. A. Gonzalez, J. Giesecke, W. Marx, and E. A. Rodal. 2010. “Air entrapped in gravity pipeline systems.” J. Hydraul. Res. 48 (3): 338–347. https://doi.org/10.1080/00221686.2010.481839.
Romero, G., V. S. Fuertes-Miquel, Ó. E. Coronado-Hernández, R. Ponz-Carcelén, and F. Biel-Sanchis. 2020. “Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations.” Urban Water J. 17 (6): 568–575. https://doi.org/10.1080/1573062X.2020.1800762.
Tijsseling, A. S., Q. Hou, Z. Bozkuş, and J. Laanearu. 2016. “Improved one-dimensional models for rapid emptying and filling of pipelines.” J. Pressure Vessel Technol. 138 (3): 15. https://doi.org/10.1115/1.4031508.
Vasconcelos, J. G., C. D. Chosie, and G. M. Leite. 2012. “Investigation of air pockets compression and motion in stormwater storage tunnels.” In Proc., World Environmental and Water Resources Congress 2012: Crossing Boundaries, 1458–1468. Reston, VA: ASCE.
Vasconcelos, J. G., and S. J. Wright. 2005. “Experimental investigation of surges in a stormwater storage tunnel.” J. Hydraul. Eng. 131 (10): 853–861. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(853).
Vasconcelos, J. G., and S. J. Wright. 2009. “Investigation of rapid filling of poorly ventilated stormwater storage tunnels.” J. Hydraul. Res. 47 (5): 547–558. https://doi.org/10.3826/jhr.2009.3390.
Wang, H., and Z. J. Zhai. 2012. “Analyzing grid independency and numerical viscosity of computational fluid dynamics for indoor environment applications.” Build. Environ. 52 (6): 107–118. https://doi.org/10.1016/j.buildenv.2011.12.019.
Wilcox, D. C. 1988. “Reassessment of the scale-determining equation for advanced turbulence models.” AIAA J. 26 (11): 1299–1310. https://doi.org/10.2514/3.10041.
Wu, G., X. Duan, J. Zhu, X. Li, X. Tang, and H. Gao. 2021. “Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models.” J. Hydroinf. 23 (2): 231–248. https://doi.org/10.2166/hydro.2021.134.
Zhou, L., D.-Y. Liu, and C.-Q. Ou. 2011. “Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model.” Eng. Appl. Comput. Fluid Mech. 5 (1): 127–140. https://doi.org/10.1080/19942060.2011.11015357.
Zhou, L., H. Wang, B. Karney, D. Liu, P. Wang, and S. Guo. 2018. “Dynamic behavior of entrapped air pocket in a water filling pipeline.” J. Hydraul. Eng. 144 (8): 04018045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001491.
Zukoski, E. 1966. “Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes.” J. Fluid Mech. 25 (4): 821–837. https://doi.org/10.1017/S0022112066000442.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 149Issue 4April 2023

History

Received: Apr 5, 2022
Accepted: Dec 8, 2022
Published online: Feb 15, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 15, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Adjunct Professor, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (corresponding author). ORCID: https://orcid.org/0000-0002-1448-9201. Email: [email protected]
Oscar E. Coronado-Hernández [email protected]
Associate Professor, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia. Email: [email protected]
Andres M. Aguirre-Mendoza [email protected]
Research Assistant, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia. Email: [email protected]
Adjunct Professor, Facultad de Ingeniería, Universidad de Cartagena, Cartagena 130015, Colombia; Chief Project Engineer, Grupo INMEDIT S.A.S., Carrera 5, Cartagena 130001, Colombia. ORCID: https://orcid.org/0000-0002-2861-2442. Email: [email protected]
Associate Professor, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València, Camino de Vera S/N CP, Valencia 46022, Spain. ORCID: https://orcid.org/0000-0003-3524-2555. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share