Abstract

Our data show large scatter in the critical Shields stress values for initial sediment motion. The main sources of dispersion are related to the methodological procedures defining the inception of movement (i.e., visual observations or extrapolation of sediment transport rate) and to the estimation of the bed shear stress. The threshold for sediment motion varies with many factors related not only to grain size but also to bed composition (e.g., presence of fine sediments in a coarse matrix), arrangement (e.g., bed roughness, grain orientation, and characteristic lengths of bed structures) and slope. New models to estimate the critical Shields number are proposed using grain size or bed slope or a combination of both. Model parameters and uncertainty are estimated through Bayesian inference using prior knowledge of these parameters and measured data. Apart from the uncertainty in observations, two types of uncertainty can be evaluated: one related to the parameter estimation (i.e., parametric) and one related to the choice of the model (i.e., structural). Finally, a four-parameter model based on the grain size and bed slope yields the best results and demonstrates potential interaction between these two parameters. Model uncertainty, however, remains large, which indicates that other input parameters may be needed to improve the proposed model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon request.

Acknowledgments

This study was supported by INRAE (formerly Irstea), Rhône-Alpes region, through the CMIRA ExploraPro financial support (B. Camenen), and the French National Research Agency (ANR) under Grant ANR-18-CE01-0019-01 (DEAR project), and EDF (Ph.D. thesis of E. Perret). We would like to thank Alain Recking and Ladislav Rous˜ar for providing their datasets.

References

Aguirre-Pe, J., M. L. Olivero, and A. T. Moncada. 2003. “Particle densimetric froude number for estimating sediment transport.” J. Hydraul. Eng. 129 (6): 428–437. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(428).
Barzilai, R., J. B. Laronne, and I. Reid. 2013. “Effect of changes in fine-grained matrix on bedload sediment transport in a gravel-bed river.” Earth Surf. Processes Landforms 38 (Jun): 441–448. https://doi.org/10.1002/esp.3288.
Beheshti, A. A., and B. Ataie-Ashtiani. 2008. “Analysis of threshold and incipient conditions for sediment movement.” Coastal Eng. 55 (5): 423–430. https://doi.org/10.1016/j.coastaleng.2008.01.003.
Biron, P., C. Robson, M. L. Lapointe, and S. J. Gaskin. 2004. “Comparing different methods of bed shear stress estimates in simple and complex flow fields.” Earth Surf. Processes Landforms 29 (Aug): 1403–1415. https://doi.org/10.1002/esp.1111.
Brayshaw, A. C., L. E. Frostick, and I. Reid. 1983. “The hydrodynamics of particle clusters and sediment entrainment in coarse alluvial channels.” Sedimentology 30 (1): 137–143. https://doi.org/10.1111/j.1365-3091.1983.tb00656.x.
Buffington, J. M., and D. R. Montgomery. 1997. “A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers.” Water Resour. Res. 33 (8): 1993–2029. https://doi.org/10.1029/96WR03190.
Camenen, B. 2012. “Discussion of ‘understanding the influence of slope on the threshold of coarse grain motion: Revisiting critical stream power by C. Parker, N.J. Clifford, and C.R. Thorne.” Geomorphology 139–140 (Feb): 34–38. https://doi.org/10.1016/j.geomorph.2011.10.033.
Camenen, B., K. Holubová, M. Lukač, J. Le Coz, and A. Paquier. 2011. “Assessment of methods used in 1D models for computing bed-load transport in a large river: The Danube River in Slovakia.” J. Hydraul. Eng. 137 (10): 1190–1199. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000427.
Camenen, B., and M. Larson. 2005. “A bedload sediment transport formula for the nearshore.” Estuarine Coastal Shelf Sci. 63 (1–2): 249–260. https://doi.org/10.1016/j.ecss.2004.10.019.
Camenen, B., and M. Larson. 2010. “Discussion of ‘measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations’ by D.A. van der A, T. O’Donoghue and J.S. Ribberink.” Coastal Eng. 58 (1): 131–134. https://doi.org/10.1016/j.coastaleng.2010.08.008.
Chiew, Y.-M., and G. Parker. 1994. “Incipient sediment motion on non-horizontal slopes.” J. Hydraul. Res. 32 (5): 649–660. https://doi.org/10.1080/00221689409498706.
Church, M., M. Hassan, and J. F. Wolcott. 1998. “Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations.” Water Resour. Res. 34 (11): 3169–3179. https://doi.org/10.1029/98WR00484.
Curran, J. C. 2007. “The decrease in shear stress and increase in transport rates subsequent to an increase in sand supply to a gravel-bed channel.” Sediment. Geol. 202 (3): 572–580. https://doi.org/10.1016/j.sedgeo.2007.03.017.
Dancey, C. L., P. Diplas, A. Papanicolaou, and M. Bala. 2002. “Probability of individual grain movement and threshold condition.” J. Hydraul. Eng. 128 (12): 1069–1075. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:12(1069).
Dey, S. 1999. “Sediment threshold.” Appl. Math. Modell. 23 (5): 399–417. https://doi.org/10.1016/S0307-904X(98)10081-1.
Dey, S., and U. V. Raju. 2002. “Incipient motion of gravel and coal beds.” Sãdhanã 27 (5): 559–568. https://doi.org/10.1007/BF02703294.
Einstein, H. A. 1942. “Formulas for bed-load transportation.” Trans. Am. Soc. Civ. Eng. 107 (Aug): 575–577. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001248.
Fenton, J. D., and J. E. Abbott. 1977. “Initial movement of grains on a stream bed: The effect of relative protrusion.” Proc. R. Soc. London, Ser. A 352 (1671): 523–537. https://doi.org/10.1098/rspa.1977.0014.
Garcia, M. 2008. Sedimentation engineering: Processes, measurements, modeling, and practice. Reston, VA: ASCE.
Gregoretti, C. 2000. “The initiation of debris flow at high slopes: Experimental results.” J. Hydraul. Res. 38 (2): 83–88. https://doi.org/10.1080/00221680009498343.
Guo, J. 2020. “Empirical model for Shields diagram and its applications.” J. Hydraul. Eng. 146 (6): 04020038. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001739.
Hassan, M., M. Saletti, J. Johnson, C. Ferrer-Boix, J. Venditti, and M. Church. 2020. “Experimental insights into the threshold of motion in alluvial channels: Sediment supply and streambed state.” J. Geophys. Res. Earth Surf. 125 (12): e2020JF005736. https://doi.org/10.1029/2020JF005736.
Haynes, H., and G. Pender. 2007. “Stress history effects on gravel bed stability.” J. Hydraul. Eng. 133 (4): 343–349. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(343).
Hodge, R., H. Voepel, J. Leyland, D. Sear, and S. Ahmed. 2020. “X-ray computed tomography reveals that grain protrusion controls critical shear stress for entrainment of fluvial gravels.” Geology 48 (2): 149–153. https://doi.org/10.1130/G46883.1.
Hoffmans, G. J. C. M. 2010. “Stability of stones under uniform flow.” J. Hydraul. Eng. 136 (2): 129–136. https://doi.org/10.1061/(ASCE)0733-9429(2010)136:2(129).
Ikeda, H., and F. Iseya. 1988. Experimental study of heterogeneous sediment transport. Tsukuba, Ibaraki: Univ. of Tsukuba.
Iwagaki, Y. 1956. “Fundamental study on critical tractive force.” Trans. Jpn. Soc. Civ. Eng. 41 (Dec): 1–21. https://doi.org/10.2208/jscej1949.1956.41_1.
Jackson, W. L., and R. L. Beschta. 1984. “Influences of increased sand delivery on the morphology of sand and gravel channel.” J. Am. Water Resour. Assoc. 20 (4): 527–533. https://doi.org/10.1111/j.1752-1688.1984.tb02835.x.
Jain, R. K., and U. C. Kothyari. 2009. “Cohesion influences on erosion and bed load transport.” Water Resour. Res. 45 (6): 1–17. https://doi.org/10.1029/2008WR007044.
JCGM (Joint Committee for Guides in Metrology). 2008. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method. Cedex, France: JCGM.
Kim, S. C., C. T. Friedrichs, J. P. Y. Maa, and L. D. Wright. 2000. “Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data.” J. Hydraul. Eng. 126 (6): 399–406. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:6(399).
Kramer, H. 1935. “Sand mixtures and sand movement in fluvial models.” Trans. Am. Soc. Civ. Eng. 100 (1): 798–838. https://doi.org/10.1061/TACEAT.0004653.
Kuhnle, R., D. Wren, E. Langendoen, and J. Rigby. 2013. “Sand transport over an immobile gravel substrate.” J. Hydraul. Eng. 139 (2): 167–176. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000615.
Lajeunesse, E., L. Malverti, and F. Charru. 2010. “Bed load transport in turbulent flow at the grain scale: Experiments and modeling.” J. Geophys. Res. 115 (F04001): 1–16. https://doi.org/10.1029/2009JF001628.
Lamb, M. P., W. E. Dietrich, and J. G. Venditti. 2008. “Is the critical shields stress for incipient sediment motion dependent on channel-bed slope?” J. Geophys. Res. 113 (F02008): 20. https://doi.org/10.1029/2007JF000831.
Lane, E. W., and E. J. Carlson. 1954. “Some observations on the effect of particle shape on the movement of coarse sediments.” Trans. Am. Geophys. Union 35 (3): 453–462. https://doi.org/10.1029/TR035i003p00453.
Laronne, J. B., and M. A. Carson. 1976. “Interrelationships between bed morphology and bed-material transport for a small, gravel-bed channel.” Sedimentology 23 (1): 67–85. https://doi.org/10.1111/j.1365-3091.1976.tb00039.x.
Lavelle, J. W., and H. O. Mofjeld. 1987. “Do critical stress for incipient motion and erosion really exist?” J. Hydraul. Eng. 113 (3): 370–385. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(370).
Le Coz, J., B. Renard, L. Bonnifait, F. Branger, and R. Le Boursicaud. 2014. “Combining hydraulic knowledge and uncertain gauging in the estimation of hydrometric rating curves: A Bayesian approach.” J. Hydrol. 509 (Feb): 573–587. https://doi.org/10.1016/j.jhydrol.2013.11.016.
Li, Z., and P. D. Komar. 1986. “Laboratory measurements of pivoting angle for applications to selective entrainment of gravel in a current.” Sedimentology 33 (3): 413–423. https://doi.org/10.1111/j.1365-3091.1986.tb00545.x.
Liu, Y., F. Métivier, E. Lajeunesse, P. Lancien, C. Narteau, B. Ye, and P. Meunier. 2008. “Measuring bedload in gravel-bed mountain rivers: Averaging methods and sampling strategies.” Geodinamica Acta 21 (1–2): 81–92. https://doi.org/10.3166/ga.21.81-92.
Mansanarez, V., J. Le Coz, B. Renard, M. Lang, G. Pierrefeu, and P. Vauchel. 2016. “Bayesian analysis of stage-fall-discharge rating curves and their uncertainties.” Water Resour. Res. 52 (9): 7424–7443. https://doi.org/10.1002/2016WR018916.
Meyer-Peter, E., and R. Müller. 1948. “Formulas for bed-load transport.” In Proc., 2nd IAHR Congress, 39–64. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Mueller, E. R., J. Pitlick, and J. M. Nelson. 2005. “Variation in the reference shields stress for bed load transport in gravel-bed streams and rivers.” Water Resour. Res. 41 (W04006): 1–10. https://doi.org/10.1029/2004WR003692.
Neill, C., and M. Yalin. 1969. “Quantitative definition of beginning of bed movement.” J. Hydraul. Div. 95 (1): 585–588. https://doi.org/10.1061/JYCEAJ.0002022.
Paintal, A. S. 1971. “A stochastic model of bedload transport.” J. Hydraul. Res. 9 (4): 527–554. https://doi.org/10.1080/00221687109500371.
Parker, G., P. C. Klingeman, and D. G. McLean. 1982. “Bed load and size distribution in paved gravel-bed streams.” J. Hydraul. Div. 108 (4): 544–571. https://doi.org/10.1061/JYCEAJ.0005854.
Perret, E. 2017. “Transport of moderately sorted gravels at low bed shear stresses: Impact of bed arrangement and fine sediment in filtration.” Ph.D. thesis, Université Claude Bernard.
Perret, E., C. Berni, and B. Camenen. 2020. “How does bed surface impact bedload transport over gravel-bed rivers?” Earth Surf. Processes Landforms 45 (5): 1181–1197. https://doi.org/10.1002/esp.4792.
Perret, E., C. Berni, B. Camenen, A. Herrero, and K. El Kadi Abderrezzak. 2018. “Transport of moderately sorted gravel at low bed shear stresses: The role of fine sediment infiltration.” Earth Surf. Processes Landforms 43 (7): 1416–1430. https://doi.org/10.1002/esp.4322.
Perret, E., B. Renard, and J. Le Coz. 2021. “A rating curve model accounting for cyclic stage-discharge shifts due to seasonal aquatic vegetation.” Water Resour. Res. 57 (3): e2020WR027745. https://doi.org/10.1029/2020WR027745.
Petit, F. 1989. “Evaluation des critères de mise en mouvement et de transport de la charge de fond en milieu naturel.” Bull. de la Société Géographique de Liège 25: 91–111.
Petit, F., F. Gob, G. Houbrechts, and A. A. Assani. 2005. “Critical specific stream power in gravel-bed rivers.” Geomorphology 69 (1–4): 92–101. https://doi.org/10.1016/j.geomorph.2004.12.004.
Pilotti, M., and G. Menduni. 2001. “Beginning of sediment transport of incoherent grains in shallow shear flows.” J. Hydraul. Res. 39 (2): 115–124. https://doi.org/10.1080/00221680109499812.
Prancevic, J. P., and M. P. Lamb. 2015. “Unraveling bed slope from relative roughness in initial sediment motion.” J. Geophys. Res. Earth Surf. 120 (3): 474–489. https://doi.org/10.1002/2014JF003323.
Rao, A. R., and N. Sitaram. 1999. “Stability and mobility of sand-bed channels affected by seepage.” J. Irrig. Drain. Eng. 125 (16): 370–379. https://doi.org/10.1061/(ASCE)0733-9437(1999)125:6(370).
Recking, A. 2009. “Theoretical development on the effects of changing flow hydraulics on incipient bedload motion.” Water Resour. Res. 45 (4): 1–16. https://doi.org/10.1029/2008WR006826.
Recking, A. 2010. “A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction.” Water Resour. Res. 46 (W03518): 1–16. https://doi.org/10.1029/2009WR008007.
Recking, A., P. Frey, A. Paquier, P. Belleudy, and J. Y. Champagne. 2008. “Feedback between bed load transport and flow resistance in gravel and cobble bed rivers.” Water Resour. Res. 44 (W05412): 1–21. https://doi.org/10.1029/2007WR006219.
Reid, I., L. E. Frostick, and J. T. Layman. 1985. “The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels.” Earth Surf. Processes Landforms 10 (1): 33–44. https://doi.org/10.1002/esp.3290100107.
Reid, I., J. T. Layman, and L. E. Frostick. 1980. “The continuous measurement of bedload discharge.” J. Hydraul. Res. 18 (3): 243–249. https://doi.org/10.1080/00221688009499550.
Renard, B., V. Garreta, and M. Lang. 2006. “An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima.” Water Resour. Res. 42 (12): 1–17. https://doi.org/10.1029/2005WR004591.
Roušar, L., Z. Zachoval, and P. Julien. 2016. “Incipient motion of coarse uniform gravel.” J. Hydraul. Res. 54 (6): 615–630. https://doi.org/10.1080/00221686.2016.1212286.
Shields, A. 1936. “Anwendung der ähnlichkeits-mechanik und der turbulenzforschung auf die geshiebebewegung” [Application of similarity principles and turbulence research to bed-load movement]. Ph.D. thesis, Preussische Versuchsanstalt fur Wasserbau und Schiffbau, California Institute of Technology.
Shvidchenko, A. B., and G. Pender. 2000. “Flume study of the effect of relative depth on the incipient motion of coarse uniform sediments.” Water Resour. Res. 36 (2): 619–628. https://doi.org/10.1029/1999WR900312.
Shvidchenko, A. B., G. Pender, and T. B. Hoey. 2001. “Critical shear stress for incipient motion of sand/gravel streambeds.” Water Resour. Res. 37 (8): 2273–2283. https://doi.org/10.1029/2000WR000036.
Soulsby, R. L., and R. J. S. W. Whitehouse. 1997. “Threshold of sediment motion in coastal environment.” In Proc., Pacific Coasts and Ports’97 Conf., 149–154. Christchurch, NZ: Univ. of Canterbury.
Tait, S. 1993. “The physical processes of bed armouring in mixed grain sediment transport.” Ph.D. thesis, Univ. of Aberdeen.
US Waterways Experiment Station. 1935. Studies of river bed materials and their movement with special reference to the lower Mississippi River. Washington, DC: USACE.
Vah, M., A. Khoury, A. Jarno, and F. Marin. 2022. “A visual method for threshold detection of sediment motion in a flume experiment without human interference.” Earth Surf. Processes Landforms 47 (7): 1778–1789. https://doi.org/10.1002/esp.5346.
Vanoni, V. A. 1964. Measurements of critical shear stress for entraining fine sediment in a boundary layer. Passadena, CA: California Institute of Technology.
van Rijn, L. C. 1984. “Sediment transport, part I: Bed load transport.” J. Hydraul. Div. 110 (10): 1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431).
Venditti, J. G., P. A. Nelson, R. W. Bradley, D. Haught, and A. B. Gitto. 2017. “Bedforms, structures, patches, and sediment supply in gravel bed Rivers.” In Gravel-bed rivers: Processes and disasters, edited by D. Tsutsumi and J. B. Laronne. New York: Wiley.
Vericat, D., M. Church, and R. J. Batalla. 2006. “Bed load bias: Comparison of measurements obtained using two (76 and 152 mm) Helley-Smith samplers in a gravel bed river.” Water Resour. Res. 42 (1): 1–13. https://doi.org/10.1029/2005WR004025.
Wilcock, P. R. 1988. “Methods for estimating the critical shear stress of individual fractions in mixed-size sediment.” Water Resour. Res. 24 (7): 1127–1135. https://doi.org/10.1029/WR024i007p01127.
Wilcock, P. R. 1996. “Estimating local bed shear stress from velocity observations.” Water Resour. Res. 32 (11): 3361–3366. https://doi.org/10.1029/96WR02277.
Wilcock, P. R., and J. C. Crowe. 2003. “Surface-based transport model for mixed-size sediment.” J. Hydraul. Eng. 129 (2): 120–128. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120).
Wren, D., R. Kuhnle, E. Langendoen, and J. Rigby. 2014. “Turbulent flow and sand transport over a cobble bed in a laboratory flume.” J. Hydraul. Eng. 140 (4): 167–176. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000838.
Yager, E. M., M. W. Schmeeckle, and A. Badoux. 2018. “Resistance is not futile: Grain resistance controls on observed critical shields stress variations.” J. Geophys. Res. Earth Surf. 123 (12): 3308–3322. https://doi.org/10.1029/2018JF004817.
Young, R. A., and R. Mann. 1985. “Erosion velocities of skeletal carbonate sands, St. Thomas, Virgin Islands.” Mar. Geol. 69 (1–2): 171–185. https://doi.org/10.1016/0025-3227(85)90140-9.
Zanke, T., and V. Luckner. 2007. “An analytical solution for calculating the initiation of sediment motion.” Int. J. Sediment Res. 22 (2): 87–102.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 149Issue 4April 2023

History

Received: Oct 12, 2021
Accepted: Nov 9, 2022
Published online: Jan 19, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 19, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Institut National de Recherche pour l’Agriculture, l’Alimentation, et l’Environnement (INRAE), Unit Research (UR) RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS 20244, Villeurbanne Cedex F-69625, France; Compagnie Nationale du Rhône (CNR), 4 Rue de Chalon-sur-Saône, Lyon 69007, France (corresponding author). ORCID: https://orcid.org/0000-0002-4444-6640. Email: [email protected]
Benoit Camenen [email protected]
Professor, Institut National de Recherche pour l’Agriculture, l’Alimentation, et l’Environnement (INRAE), Unit Research (UR) RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS 20244, Villeurbanne Cedex F-69625, France. Email: [email protected]
Institut National de Recherche pour l’Agriculture, l’Alimentation, et l’Environnement (INRAE), Unit Research (UR) RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS 20244, Villeurbanne Cedex F-69625, France. ORCID: https://orcid.org/0000-0003-1806-7054. Email: [email protected]
Kamal El kadi Abderrezzak [email protected]
Professor, Electricité de France Recherche & Développement (EDF R&D), Laboratoire National d’Hydraulique et Environnement (LNHE)/Laboratoire d’Hydraulique Saint-Venant (LHSV), 6 Quai Watier, Chatou 78401, France. Email: [email protected]
Benjamin Renard, Ph.D. [email protected]
Institut National de Recherche pour l’Agriculture, l’Alimentation, et l’Environnement (INRAE), Unit Research (UR) RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS 20244, Villeurbanne Cedex F-69625, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share