Technical Papers
May 30, 2024

DEM Investigation of the Effect of Gradation on the Strength, Dilatancy, and Fabric Evolution of Coarse-Grained Soils

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 8

Abstract

Design of geosystems built on coarse-grained soils with broader gradations are typically based on methodologies developed for clean sands without explicit consideration of the effects of gradation, potentially leading to uncertainty in performance predictions. This study investigates the effect of changes in gradation on the shear strength, stress-dilatancy behavior, critical state parameters, and fabric evolution of coarse-grained soils using three-dimensional (3D) discrete element method (DEM) simulations. The simulations of monotonic isotropically-consolidated drained and undrained triaxial tests were conducted on specimens with coefficients of uniformity (CU) between 1.9 and 6.4 composed of nonspherical particles following the calibration of parameters against experimental triaxial data. Results are used to evaluate the peak and critical state shear strengths, dilatancy responses, critical state lines, shear-induced pore pressures, and fabric evolution. Notably, an increase in CU leads to increases in peak shear strength, total dilation, rate of dilation, negative pore pressure magnitude, and rate of pore pressure generation. The results show that the state parameter better captures the effect of gradation than the relative density because the former accounts for the difference between the initial and critical states. The trends in triaxial parameters are compared with established frameworks to highlight the differences in response resulting from variations in CU. The particle-level measurements indicate that gradation affects the packing characteristics and contact force transmission, where broader gradations result in greater interlocking between coarser particles, and the presence of coarser particles increases the anisotropy of the strong force networks. The finer particles provide resistance to buckling within these strong force networks. Additionally, particles smaller than D10 are inactive in stress transmission, and the percentage of particles inactive in stress transmission decreases with an increasing CU. The combination of macro- and microresults contributes to understanding the mobilization of stress and its dependency on dilatancy in soils of varying gradation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Raw data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Financial support for this project comes from the National Science Foundation (NSF) under Grant CMMI-1916152. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of NSF. The authors would also like to acknowledge the contribution and discussions of Rachel Reardon, Francisco Humire, Sharif Ahmed, Trevor Carey, Nathan Love, Anna Chiaradonna, and Katerina Ziotopoulou.

References

Abbireddy, C. O. R., and C. R. I. Clayton. 2010. “Varying initial void ratios for DEM simulations.” Géotechnique 60 (6): 497–502. https://doi.org/10.1680/geot.2010.60.6.497.
Ahmed, S. S. 2021. “Study on particle shape, size and gradation effects on the mechanical behavior of coarse-grained soils.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of California Davis.
Ahmed, S. S., A. Martinez, and J. T. DeJong. 2023a. “Effect of gradation on the strength and stress-dilation behavior of coarse-grained soils in drained and undrained triaxial compression.” J. Geotech. Geoenviron. Eng. 149 (5): 04023019. https://doi.org/10.1061/JGGEFK.GTENG-10972.
Ahmed, S. S., A. Martinez, and J. T. DeJong. 2023b. “Gradation and state effects on the strength and dilatancy of coarse-grained soils.” In Proc., 8th Int. Symp. on Deformation Characteristics of Geomaterials (IS Porto). London: International Society for Soil Mechanics and Geotechnical Engineering.
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Amirpour Harehdasht, S., M. Karray, M. N. Hussien, and M. Chekired. 2017. “Influence of particle size and gradation on the stress-dilatancy behavior of granular materials during drained triaxial compression.” Int. J. Geomech. 17 (9): 04017077. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000951.
Basson, M. S., and A. Martinez. 2020. “A DEM study of the evolution of fabric of coarse-grained materials during oedometric and isotropic compression.” In Proc., Geo-Congress 2020, 473–481. Reston, VA: ASCE.
Basson, M. S., and A. Martinez. 2023. “A multi-orientation system for determining angular distributions of shear wave velocity in soil specimens.” Geotech. Test. J. 46 (2): 254. https://doi.org/10.1520/GTJ20210277.
Basson, M. S., A. Martinez, and J. T. DeJong. 2023. “Effect of particle size distribution on monotonic shear strength and stress-dilatancy of coarse-grained soils.” In Proc., GeoCongress 2023, 10. Reston, VA: ASCE.
Basson, M. S., J. Miller, and A. Martinez. 2021. “Experimental estimation of fabric in granular materials using shear wave velocity measurements.” In Proc., Soil Dynamics, Lecture Notes in Civil Engineering, edited by T. G. Sitharam, S. V. Dinesh, and R. Jakka, 311–323. Singapore: Springer.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Carey, T. J., A. Chiaradonna, N. C. Love, D. W. Wilson, K. Ziotopoulou, A. Martinez, and J. T. DeJong. 2022. “Effect of soil gradation on embankment response during liquefaction: A centrifuge testing program.” Soil Dyn. Earthquake Eng. 157 (Jun): 107221. https://doi.org/10.1016/j.soildyn.2022.107221.
Chakraborty, T., and R. Salgado. 2010. “Dilatancy and shear strength of sand at low confining pressures.” J. Geotech. Geoenviron. Eng. 136 (3): 527–532. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000237.
Chaney, R., K. Demars, P. Lade, C. Liggio, and J. Yamamuro. 1998. “Effects of non-plastic fines on minimum and maximum void ratios of sand.” Geotech. Test. J. 21 (4): 336. https://doi.org/10.1520/GTJ11373J.
Chang, C. S., and M. Meidani. 2013. “Dominant grains network and behavior of sand-silt mixtures: Stress-strain modeling.” Int. J. Numer. Anal. Methods Geomech. 37 (15): 2563–2589. https://doi.org/10.1002/nag.2152.
Chiaradonna, A., K. Ziotopoulou, T. J. Carey, J. T. DeJong, and R. W. Boulanger. 2022. “Dynamic behavior of uniform clean sands: Evaluation of predictive capabilities in the element- and the system-level scale.” In Proc., Geo-Congress 2022, 444–454. Reston, VA: ASCE.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Ciantia, M. O., M. Arroyo, F. Calvetti, and A. Gens. 2015. “An approach to enhance efficiency of DEM modelling of soils with crushable grains.” Géotechnique 65 (2): 91–110. https://doi.org/10.1680/geot.13.P.218.
Coetzee, C. J. 2019. “Particle upscaling: Calibration and validation of the discrete element method.” Powder Technol. 344 (Feb): 487–503. https://doi.org/10.1016/j.powtec.2018.12.022.
Cubrinovski, M., and K. Ishihara. 2002. “Maximum and minimum void ratio characteristics of sands.” Soils Found. 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
da Cruz, F., S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir. 2005. “Rheophysics of dense granular materials: Discrete simulation of plane shear flows.” Phys. Rev. E 72 (2): 021309. https://doi.org/10.1103/PhysRevE.72.021309.
DeJong, J. T., A. P. Sturm, and M. Ghafghazi. 2016. “Characterization of gravelly alluvium.” Soil Dyn. Earthquake Eng. 91 (Dec): 104–115. https://doi.org/10.1016/j.soildyn.2016.09.032.
Doygun, O., H. G. Brandes, and T. T. Roy. 2019. “Effect of gradation and non-plastic fines on monotonic and cyclic simple shear strength of silica sand.” Geotech. Geol. Eng. 37 (4): 3221–3240. https://doi.org/10.1007/s10706-019-00838-9.
Dyvik, R., T. Berre, S. Lacasse, and B. Raadim. 1987. “Comparison of truly undrained and constant volume direct simple shear tests.” Géotechnique 37 (1): 3–10. https://doi.org/10.1680/geot.1987.37.1.3.
Evans, M. D., and S. Zhou. 1995. “Liquefaction behavior of sand-gravel composites.” J. Geotech. Eng. 121 (3): 287–298. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:3(287).
Ferellec, J.-F., and G. R. McDowell. 2008. “A simple method to create complex particle shapes for DEM.” Geomech. Geoeng. 3 (3): 211–216. https://doi.org/10.1080/17486020802253992.
Fragaszy, R. J., J. Su, F. H. Siddiqi, and C. L. Ho. 1992. “Modeling strength of sandy gravel.” J. Geotech. Eng. 118 (6): 920–935. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(920).
Garcia, X., J.-P. Latham, J. Xiang, and J. P. Harrison. 2009. “A clustered overlapping sphere algorithm to represent real particles in discrete element modeling.” Géotechnique 59 (9): 779–784. https://doi.org/10.1680/geot.8.T.037.
Ghadr, S., and A. Assadi-Langroudi. 2019. “Effect of grain size and shape on undrained behaviour of sands.” Int. J. Geosynth. Ground Eng. 5 (3): 18. https://doi.org/10.1007/s40891-019-0170-1.
Gong, G., X. Zha, and J. Wei. 2012. “Comparison of granular material behaviour under drained triaxial and plane strain conditions using 3D DEM simulations.” Acta Mech. Solida Sin. 25 (2): 186–196. https://doi.org/10.1016/S0894-9166(12)60019-6.
Gu, X., J. Zhang, and X. Huang. 2020. “DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework.” Comput. Geotech. 128 (Dec): 103787. https://doi.org/10.1016/j.compgeo.2020.103787.
Hamidi, A., E. Azini, and B. Masoudi. 2012. “Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures.” Scientia Iranica 19 (3): 393–402. https://doi.org/10.1016/j.scient.2012.04.002.
Hanley, K. J., X. Huang, C. O’Sullivan, and F. Kwok. 2013. Challenges of simulating undrained tests using the constant volume method in DEM, 277–280. Sydney, Australia: AIP Publishing.
Harkness, J., A. Zervos, L. Le Pen, S. Aingaran, and W. Powrie. 2016. “Discrete element simulation of railway ballast: Modelling cell pressure effects in triaxial tests.” Granular Matter 18 (3): 65. https://doi.org/10.1007/s10035-016-0660-y.
Huang, X., K. J. Hanley, C. O’Sullivan, and F. C. Y. Kwok. 2014a. “Effect of sample size on the response of DEM samples with a realistic grading.” Particuology 15 (Aug): 107–115. https://doi.org/10.1016/j.partic.2013.07.006.
Huang, X., C. O’Sullivan, K. J. Hanley, and C. Y. Kwok. 2014b. “Discrete-element method analysis of the state parameter.” Géotechnique 64 (12): 954–965. https://doi.org/10.1680/geot.14.P.013.
Jiang, M. D., Z. X. Yang, and Y. H. Xie. 2018. “The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies.” Granular Matter 20 (80): 1–5.
Kawamoto, R., E. Andò, G. Viggiani, and J. E. Andrade. 2016. “Level set discrete element method for three-dimensional computations with triaxial case study.” J. Mech. Phys. Solids 91 (Jun): 1–13. https://doi.org/10.1016/j.jmps.2016.02.021.
Knodel, P., R. Fragaszy, W. Su, and F. Siddiqi. 1990. “Effects of oversize particles on the density of clean granular soils.” Geotech. Test. J. 13 (2): 106. https://doi.org/10.1520/GTJ10701J.
Kokusho, T., T. Hara, and R. Hiraoka. 2004. “Undrained shear strength of granular soils with different particle gradations.” J. Geotech. Geoenviron. Eng. 130 (6): 621–629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621).
Kruyt, N. P. 2016. “On weak and strong contact force networks in granular materials.” Int. J. Solids Struct. 92–93 (Aug): 135–140. https://doi.org/10.1016/j.ijsolstr.2016.02.039.
Li, G., Y.-J. Liu, C. Dano, and P.-Y. Hicher. 2015. “Grading-dependent behavior of granular materials: From discrete to continuous modeling.” J. Eng. Mech. 141 (6): 04014172. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000866.
Li, X.-S., Y. F. Dafalias, and Z.-L. Wang. 1999. “State-dependant dilatancy in critical-state constitutive modelling of sand.” Can. Geotech. J. 36 (4): 599–611. https://doi.org/10.1139/t99-029.
Liu, D., C. O’Sullivan, and J. A. H. Carraro. 2021. “Influence of particle size distribution on the proportion of stress-transmitting particles and implications for measures of soil state.” J. Geotech. Geoenviron. Eng. 147 (3): 04020182. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002466.
Liu, D., C. O’Sullivan, and J. A. H. Carraro. 2023. “The influence of particle size distribution on the stress distribution in granular materials.” Géotechnique 73 (3): 250–264. https://doi.org/10.1680/jgeot.21.00127.
Liu, X., and J. Yang. 2018. “Shear wave velocity in sand: Effect of grain shape.” Géotechnique 68 (8): 742–748. https://doi.org/10.1680/jgeot.17.T.011.
Maeda, K., and H. Hirabayashi. 2006. “Influence of grain properties on macro mechanical behaviors of granular media by DEM.” J. Appl. Mech. 9 (Aug): 623–630. https://doi.org/10.2208/journalam.9.623.
Markauskas, D., R. Kačianauskas, A. Džiugys, and R. Navakas. 2010. “Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations.” Granular Matter 12 (1): 107–123. https://doi.org/10.1007/s10035-009-0158-y.
Martin, E. L., C. Thornton, and S. Utili. 2020. “Micromechanical investigation of liquefaction of granular media by cyclic 3D DEM tests.” Géotechnique 70 (10): 906–915. https://doi.org/10.1680/jgeot.18.P.267.
Menq, F. Y. 2003. “Dynamic properties of sandy and gravelly soils.” Ph.D. thesis, Dept. of Civil, Architectural and Environmental Engineering, Univ. of Texas Austin.
Minh, N. H., Y. P. Cheng, and C. Thornton. 2014. “Strong force networks in granular mixtures.” Granular Matter 16 (1): 69–78. https://doi.org/10.1007/s10035-013-0455-3.
Muir Wood, D., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Oda, M., and H. Kazama. 1998. “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Géotechnique 48 (4): 465–481. https://doi.org/10.1680/geot.1998.48.4.465.
Olivera, R. R. 2004. “Numerical simulations of undrained granular media.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Univ. of Waterloo.
O’Sullivan, C. 2011. Particulate discrete element modelling. Boca Raton, FL: CRC Press.
Pires-Sturm, A., R. Jaeger, and J. DeJong. 2022. Estimating maximum and minimum void ratio from index parameters. Baltimore: Association of State Dam Safety Officials.
Polanía, O., M. Cabrera, M. Renouf, E. Azéma, and N. Estrada. 2023. “Grain size distribution does not affect the residual shear strength of granular materials: An experimental proof.” Phys. Rev. E 107 (5): L052901. https://doi.org/10.1103/PhysRevE.107.L052901.
Price, M., V. Murariu, and G. Morrison. 2007. “Sphere clump generation and trajectory comparison for real particles.” In Proc., 4th Int. Conf. Discrete Element Methods, Brisbane, 1–8. Boston: MIT.
Radjai, F., D. E. Wolf, S. Roux, M. Jean, and J. J. Moreau. 1997. “Force networks in dense granular media.” In Vol. 97 of Powders and grains, 211–214. Rotterdam, Netherlands: Balkema.
Reardon, R., F. Humire, S. S. Ahmed, K. Ziotopoulou, A. Martinez, and J. T. DeJong. 2022. “Effect of gradation on the strength and stress-dilatancy of coarse-grained soils: A comparison of monotonic direct simple shear and triaxial tests.” In Proc., Geo-Congress 2022, 226–236. Reston, VA: ASCE.
Reardon, R. A. 2021. “Monotonic and cyclic direct simple shear testing of coarse-grained soils.” Master’s thesis, Dept. of Civil and Environmental Engineering, UC Davis.
Roessler, T., and A. Katterfeld. 2018. “Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles.” Powder Technol. 330 (May): 58–66. https://doi.org/10.1016/j.powtec.2018.01.044.
Rothenburg, L., and R. J. Bathurst. 1992. “Micromechanical features of granular assemblies with planar elliptical particles.” Géotechnique 42 (1): 79–95. https://doi.org/10.1680/geot.1992.42.1.79.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London, Ser. A 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Santamarina, J. C. 2003. “Soil behavior at the microscale: Particle forces.” In Soil behavior and soft ground construction, 25–56. Cambridge, MA: ASCE.
Sawyer, B. D. 2020. “Cone penetration testing of coarse-grained soils in the centrifuge to examine the effects of soil gradation and centrifuge scaling.” Master’s thesis, Dept. of Civil and Environmental Engineering, Univ. of California Davis.
Schofield, A., and P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Scholtès, L., B. Chareyre, F. Nicot, and F. Darve. 2009. “Micromechanics of granular materials with capillary effects.” Int. J. Eng. Sci. 47 (1): 64–75. https://doi.org/10.1016/j.ijengsci.2008.07.002.
Seyedi Hosseininia, E. 2012. “Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method.” Granular Matter 14 (4): 483–503. https://doi.org/10.1007/s10035-012-0340-5.
Shinohara, K., M. Oida, and B. Golman. 2000. “Effect of particle shape on angle of internal friction by triaxial compression test.” Powder Technol. 107 (1–2): 131–136. https://doi.org/10.1016/S0032-5910(99)00179-5.
Simoni, A., and G. T. Houlsby. 2006. “The direct shear strength and dilatancy of sand–gravel mixtures.” Geotech. Geol. Eng. 24 (3): 523–549. https://doi.org/10.1007/s10706-004-5832-6.
Šmilauer, V., E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, and L. Sibille. 2010. “Yade reference documentation.” Yade Documentation 474 (1): 1–531.
Sturm, A. 2019. “On the liquefaction potential of gravelly soils: Characterization, triggering and performance.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of California Davis.
Sufian, A., M. Artigaut, T. Shire, and C. O’Sullivan. 2021. “Influence of fabric on stress distribution in gap-graded soil.” J. Geotech. Geoenviron. Eng. 147 (5): 04021016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002487.
Suhr, B., and K. Six. 2020. “Simple particle shapes for DEM simulations of railway ballast: Influence of shape descriptors on packing behavior.” Granular Matter 22 (2): 43. https://doi.org/10.1007/s10035-020-1009-0.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Geotechnique 59 (1): 43–53.
Tolomeo, M., and G. R. McDowell. 2022. “Modelling real particle shape in DEM: A comparison of two methods with application to railway ballast.” Int. J. Rock Mech. Min. Sci. 159 (Nov): 105221. https://doi.org/10.1016/j.ijrmms.2022.105221.
Tordesillas, A., J. Shi, and T. Tshaikiwsky. 2011. “Stress-dilatancy and force chain evolution.” Int. J. Numer. Anal. Methods Geomech. 35 (2): 264–292. https://doi.org/10.1002/nag.910.
Vaid, Y. P., and S. Sasitharan. 1992. “The strength and dilatancy of sand.” Can. Geotech. J. 29 (3): 522–526. https://doi.org/10.1139/t92-058.
Voivret, C., F. Radjaï, J.-Y. Delenne, and M. S. El Youssoufi. 2009. “Multiscale force networks in highly polydisperse granular media.” Phys. Rev. Lett. 102 (17): 178001. https://doi.org/10.1103/PhysRevLett.102.178001.
Wang, Z.-L., Y. F. Dafalias, X.-S. Li, and F. I. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Wei, D., J. Wang, and B. Zhao. 2018. “A simple method for particle shape generation with spherical harmonics.” Powder Technol. 330 (May): 284–291. https://doi.org/10.1016/j.powtec.2018.02.006.
Wiącek, J., and M. Molenda. 2014. “Effect of particle size distribution on micro- and macromechanical response of granular packings under compression.” Int. J. Solids Struct. 51 (25–26): 4189–4195. https://doi.org/10.1016/j.ijsolstr.2014.06.029.
Wu, M., J. Wang, A. Russell, and Z. Cheng. 2021. “DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles.” Géotechnique 71 (8): 714–727. https://doi.org/10.1680/jgeot.19.P.212.
Yan, B., R. A. Regueiro, and S. Sture. 2010. “Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets.” Eng. Comput. 27 (4): 519–550. https://doi.org/10.1108/02644401011044603.
Yan, W. M., and J. Dong. 2011. “Effect of particle grading on the response of an idealized granular assemblage.” Int. J. Geomech. 11 (4): 276–285. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000085.
Yang, J., and X. D. Luo. 2018. “The critical state friction angle of granular materials: Does it depend on grading?” Acta Geotech. 13 (3): 535–547. https://doi.org/10.1007/s11440-017-0581-x.
Yilmaz, Y., Y. Deng, C. S. Chang, and A. Gokce. 2023. “Strength–dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content.” Géotechnique 73 (3): 202–217. https://doi.org/10.1680/jgeot.20.P.320.
Youd, T. 1973. “Factors controlling maximum and minimum densities of sands.” In Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, edited by E. Selig and R. Ladd, 98. West Conshohocken, PA: ASTM.
Zhang, L., and T. M. Evans. 2018. “Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests.” Granular Matter 20 (4): 60. https://doi.org/10.1007/s10035-018-0832-z.
Zhang, W., and L. Rothenburg. 2020. “Comparison of undrained behaviors of granular media using fluid-coupled discrete element method and constant volume method.” J. Rock Mech. Geotech. Eng. 12 (6): 1272–1289. https://doi.org/10.1016/j.jrmge.2020.03.009.
Zhao, J., S. Zhao, and S. Luding. 2023. “The role of particle shape in computational modelling of granular matter.” Nat. Rev. Phys. 5 (9): 505–525. https://doi.org/10.1038/s42254-023-00617-9.
Zhao, S., M. T. Evans, and X. Zhou. 2018. “Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils.” Géotechnique 68 (12): 1085–1098. https://doi.org/10.1680/jgeot.17.P.158.
Zhao, S., N. Zhang, X. Zhou, and L. Zhang. 2017. “Particle shape effects on fabric of granular random packing.” Powder Technol. 310 (Apr): 175–186. https://doi.org/10.1016/j.powtec.2016.12.094.
Zheng, J., and R. D. Hryciw. 2015. “Traditional soil particle sphericity, roundness and surface roughness by computational geometry.” Comput. Geotech. 65 (6): 494–506. https://doi.org/10.1680/geot.14.P.192.
Zuo, K., X. Gu, J. Zhang, and R. Wang. 2023. “Exploring packing density, critical state, and liquefaction resistance of sand-fines mixture using DEM.” Comput. Geotech. 156 (Apr): 105278. https://doi.org/10.1016/j.compgeo.2023.105278.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 8August 2024

History

Received: Sep 19, 2023
Accepted: Mar 13, 2024
Published online: May 30, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 30, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Mandeep Singh Basson, Ph.D., A.M.ASCE [email protected]
Dept. of Civil and Environmental Engineering, Univ. of California, Davis, Davis, CA 95616. Email: [email protected]
Alejandro Martinez, Ph.D., A.M.ASCE https://orcid.org/0000-0003-4649-925X [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of California, Davis, Davis, CA 95616 (corresponding author). ORCID: https://orcid.org/0000-0003-4649-925X. Email: [email protected]
Jason T. DeJong, Ph.D., F.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of California, Davis, Davis, CA 95616. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share