Technical Papers
Jun 3, 2024

Biocementation of a Well-Graded Gravelly Soil and Macromechanical Characterization

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 8

Abstract

Soil biocementation through microbially induced carbonate precipitation (MICP) is a promising technique for improving soil behavior in a nondisruptive manner, particularly for rehabilitation and retrofitting applications. Previous studies characterizing the shear behavior of biocemented soils have concentrated on poorly graded sands, whereas research on well-graded gravelly soils, which are extensively used in shallow geotechnical structures, has been lacking. Mohr–Coulomb strength parameters have been predominately employed to interpret the macromechanical effects of biocementation, but the previously reported findings show significant contradictions. In this study, a well-graded aggregate, representative of commonly used well-graded gravelly soils, was biocemented and subjected to monotonic drained triaxial compression. The test results show remarkable improvements in shear behavior, with the observed changes in stress–strain responses, strength and stiffness development, and stress dilatancy agreeing with those reported for biocemented sands as well as conventional cemented soils. Relatively low cementation levels can effectively rectify the mechanical performance caused by poor compaction to that seen at optimal levels, demonstrating the feasibility and potential of biocementation for improving soils of this type. Detailed analysis of the results reveals the decisive role of cementing bonds and their degradation in causing behavioral changes at different shearing stages. The theories of bonded structure and force-chain evolution are used to explain the preyielding observations, while an analytical approach capable of quantifying the evolution of different strength components is presented for postyielding macromechanical characterization. Conversely to the inference drawn from the strength parameters, the largest improvement is found in the frictional rather than the dilative and cohesive components of strength. Further analysis reveals the commonality of the macromechanical effects of biocementation, density, and confinement, and a unique relationship between macromechanical composition and peak stress ratio emerges.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant (Reference No.: EP/S02302X/1) for the Centre for Doctoral Training in Future Infrastructure and the Built Environment (FIBE2) at the University of Cambridge.

References

Acar, Y. B., and E. T. A. El-Tahir. 1986. “Low strain dynamic properties of artificially cemented sand.” J. Geotech. Eng. 112 (11): 1001–1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001).
Adam, D., A. Vogel, and A. Zimmermann. 2007. “Ground improvement techniques beneath existing rail tracks.” Proc. Inst. Civ. Eng. Ground Improv. 11 (4): 229–235. https://doi.org/10.1680/grim.2007.11.4.229.
Adamo, N., N. Al-Ansari, V. Sissakian, J. Laue, and S. Knutsson. 2020. “Dam safety: Technical problems of aging embankment dams.” J. Earth Sci. Geotech. Eng. 10 (6): 281–322.
Aqil, U., F. Tatsuoka, T. Uchimura, T. N. Lohani, Y. Tomita, and K. Matsushima. 2005. “Strength and deformation characteristics of recycled concrete aggregate as a backfill material.” Soils Found. 45 (5): 53–72. https://doi.org/10.3208/sandf.45.5_53.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698-12. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C127-15. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-17. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for consolidated drained triaxial compression test for soils. ASTM D7181-20. West Conshohocken, PA: ASTM.
ASTM. 2022. Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM C128-22. West Conshohocken, PA: ASTM.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Brown, S. F., and F. W. K. Chan. 1996. “Reduced rutting in unbound granular pavement layers through improved grading design.” Proc. Inst. Civ. Eng. Transp. 117 (1): 40–49. https://doi.org/10.1680/itran.1996.28142.
BSI (British Standard Institution). 2018. Geotechnical investigation and testing—Laboratory testing of soil, Part 9: Consolidated triaxial compression tests on water saturated soils. BS EN ISO 17892-9:2018. London: BSI.
Cai, Y., J. Chen, Z. Cao, C. Gu, and J. Wang. 2018. “Influence of grain gradation on permanent strain of unbound granular materials under low confining pressure and high-cycle loading.” Int. J. Geomech. 18 (3): 04017156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001054.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chou, C. W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Clough, G. W., N. Sitar, R. C. Bachus, and N. S. Rad. 1981. “Cemented sands under static loading.” J. Geotech. Eng. Div. 107 (6): 799–817. https://doi.org/10.1061/AJGEB6.0001152.
Coop, M. R., and J. H. Atkinson. 1993. “The mechanics of cemented carbonate sands.” Géotechnique 43 (1): 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
Cuccovillo, T., and M. R. Coop. 1997. “Yielding and pre-failure deformation of structured sands.” Géotechnique 47 (3): 491–508. https://doi.org/10.1680/geot.1997.47.3.491.
Cuccovillo, T., and M. R. Coop. 1999. “On the mechanics of structured sands.” Géotechnique 49 (6): 741–760. https://doi.org/10.1680/geot.1999.49.6.741.
Cui, M., J. Zheng, J. Chu, C. Wu, and H. Lai. 2021. “Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand.” Acta Geotech. 16 (5): 1377–1389. https://doi.org/10.1007/s11440-020-01099-0.
Cui, M., J. Zheng, R. Zhang, H. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Duncan, J. M., and R. L. Mokwa. 2001. “Passive earth pressures: Theories and tests.” J. Geotech. Geoenviron. Eng. 127 (3): 248–257. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(248).
Fannin, R. J., A. Eliadorani, and J. M. T. Wilkinson. 2005. “Shear strength of cohesionless soils at low stress.” Géotechnique 55 (6): 467–478. https://doi.org/10.1680/geot.2005.55.6.467.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Fu, T., A. Clarà Saracho, and S. K. Haigh. 2023. “Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review.” Biogeotechnics 1 (1): 100002. https://doi.org/https://doi.org/10.1016/j.bgtech.2023.100002.
Fuller, W. B., and S. E. Thompson. 1907. “The laws of proportioning concrete.” Trans. Am. Soc. Civ. Eng. 59 (2): 67–143. https://doi.org/10.1061/TACEAT.0001979.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (Jun): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Hatami, K., and J. Boutin. 2022. “Influence of backfill type on the load-bearing performance of GRS bridge abutments.” Geosynth. Int. 29 (5): 506–519. https://doi.org/10.1680/jgein.21.00052.
Hatanaka, M., A. Uchida, Y. Taya, N. Takehara, T. Hagisawa, N. Sakou, and S. Ogawa. 2001. “Permeability characteristics of high-quality undisturbed gravelly soils measured in laboratory tests.” Soils Found. 41 (3): 45–55. https://doi.org/10.3208/sandf.41.3_45.
Igwe, O., K. Sassa, and F. Wang. 2007. “The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests.” Landslides 4 (1): 43–51. https://doi.org/10.1007/s10346-006-0051-2.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Janbu, N. 1963. “Soil compressibility as determined by oedometer and triaxial tests.” In Proc., European Conf. on Soil Mechanics and Foundation Engineering (ECSMFE), 19–25. Essen, Germany: Deutsche Gesellschaft für Erd- und Grundbau e.V.
Jia, J., M. Lino, F. Jin, and C. Zheng. 2016. “The cemented material dam: A new, environmentally friendly type of dam.” Engineering 2 (4): 490–497. https://doi.org/10.1016/J.ENG.2016.04.003.
Jiang, N., et al. 2021. “Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications.” Soil Use Manage. 38 (1): 69–93. https://doi.org/10.1111/sum.12736.
Kashizadeh, E., A. Mukherjee, and A. Tordesillas. 2021. “Experimental and numerical investigations on confined granular systems stabilized by bacterial cementation.” Int. J. Geomech. 21 (1). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001891.
Kim, J., A. Athanasopoulos-Zekkos, and M. Cubrinovski. 2023. “Monotonic and cyclic simple shear response of well-graded sandy gravel soils from Wellington, New Zealand.” J. Geotech. Geoenviron. Eng. 149 (7): 04023046. https://doi.org/10.1061/JGGEFK.GTENG-10619.
Kodikara, J., T. Islam, and A. Sounthararajah. 2018. “Review of soil compaction: History and recent developments.” Transp. Geotech. 17 (Dec): 24–34. https://doi.org/https://doi.org/10.1016/j.trgeo.2018.09.006.
Kokusho, T., T. Hara, and R. Hiraoka. 2004. “Undrained shear strength of granular soils with different particle gradations.” J. Geotech. Geoenviron. Eng. 130 (6): 621–629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621).
Kongsukprasert, L., F. Tatsuoka, and M. Tateyama. 2005. “Several factors affecting the strength and deformation characteristics of cement-mixed gravel.” Soils Found. 45 (3): 107–124. https://doi.org/10.3208/sandf.45.3_107.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., and D. D. Overton. 1989. “Cementation effects in frictional materials.” J. Geotech. Eng. 115 (10): 1373–1387. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373).
Leroueil, S., and P. R. Vaughan. 1990. “The general and congruent effects of structure in natural soils and weak rocks.” Géotechnique 40 (3): 467–488. https://doi.org/10.1680/geot.1990.40.3.467.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(asce)gt.1943-5606.0001383.
Lirer, S., A. Flora, and N. C. Consoli. 2012. “Experimental evidences of the effect of fibres in reinforcing a sandy gravel.” Geotech. Geol. Eng. 30 (1): 75–83. https://doi.org/10.1007/s10706-011-9450-9.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Milling, A., H. Martin, and A. Mwasha. 2023. “Design, construction, and in-service causes of premature pavement deterioration: A fuzzy Delphi application.” J. Transp. Eng. Part B: Pavements 149 (1): 05022004. https://doi.org/10.1061/JPEODX.PVENG-1071.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behaviour. Hoboken, NJ: Wiley.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(asce)gt.1943-5606.0002201.
Nazzal, M. D., L. N. Mohammad, and A. Austin. 2020. “Evaluating laboratory tests for use in specifications for unbound base course materials.” J. Mater. Civ. Eng. 32 (4): 04020036. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003042.
Nicholson, P. G. 2015. Soil improvement and ground modification methods. Oxford, UK: Butterworth-Heinemann.
Oda, M., and H. Kazama. 1998. “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Géotechnique 48 (4): 465–481. https://doi.org/10.1680/geot.1998.48.4.465.
Paik, K. H., and R. Salgado. 2003. “Estimation of active earth pressure against rigid retaining walls considering arching effects.” Géotechnique 53 (7): 643–653. https://doi.org/10.1680/geot.2003.53.7.643.
Pakbaz, M. S., H. Behzadipour, and G. R. Ghezelbash. 2018. “Evaluation of shear strength parameters of sandy soils upon microbial treatment.” Geomicrobiol. J. 35 (8): 721–726. https://doi.org/10.1080/01490451.2018.1455766.
Porcino, D. D., and V. Marcianò. 2017. “Bonding degradation and stress–dilatancy response of weakly cemented sands.” Geomech. Geoeng. 12 (4): 221–233. https://doi.org/10.1080/17486025.2017.1347287.
Radjai, F., D. E. Wolf, M. Jean, and J. J. Moreau. 1998. “Bimodal character of stress transmission in granular packings.” Phys. Rev. Lett. 80 (1): 61–64. https://doi.org/10.1103/PhysRevLett.80.61.
Rezaeian, M., P. M. V. Ferreira, and A. Ekinci. 2019. “Mechanical behaviour of a compacted well-graded granular material with and without cement.” Soils Found. 59 (3): 687–698. https://doi.org/10.1016/j.sandf.2019.02.006.
Rowe, P. W., and G. I. Taylor. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London. Ser. A 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Schofield, A., and P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140 (5): 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Strahler, A. W., J. J. Walters, and A. W. Stuedlein. 2016. “Frictional resistance of closely spaced steel reinforcement strips used in MSE walls.” J. Geotech. Geoenviron. Eng. 142 (8): 04016030. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001492.
Suiker, A. S. J., E. T. Selig, and R. Frenkel. 2005. “Static and cyclic triaxial testing of ballast and subballast.” J. Geotech. Geoenviron. Eng. 131 (6): 771–782. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(771).
Taheri, A., Y. Sasaki, F. Tatsuoka, and K. Watanabe. 2012. “Strength and deformation characteristics of cement-mixed gravelly soil in multiple-step triaxial compression.” Soils Found. 52 (1): 126–145. https://doi.org/10.1016/j.sandf.2012.01.015.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Géotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Terzis, D., and L. Laloui. 2019a. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (Jun): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Terzis, D., and L. Laloui. 2019b. “A decade of progress and turning points in the understanding of bio-improved soils: A review.” Geomech. Energy Environ. 19 (Sep): 100116. https://doi.org/10.1016/j.gete.2019.03.001.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Thornton, C., and D. J. Barnes. 1986. “Computer simulated deformation of compact granular assemblies.” Acta Mech. 64 (1): 45–61. https://doi.org/10.1007/BF01180097.
Tong, C., G. J. Burton, S. Zhang, and D. Sheng. 2018. “A simple particle-size distribution model for granular materials.” Can. Geotech. J. 55 (2): 246–257. https://doi.org/10.1139/cgj-2017-0098.
Transportation Research Board. 2019. Renewing the national commitment to the interstate highway system: A foundation for the future. Washington, DC: National Academies of Sciences, Engineering, and Medicine.
Trhlíková, J., D. Mašín, and J. Boháč. 2012. “Small-strain behaviour of cemented soils.” Géotechnique 62 (10): 943–947. https://doi.org/10.1680/geot.9.P.100.
Wang, L., J. Chu, S. Wu, and H. Wang. 2021. “Stress–dilatancy behavior of cemented sand: Comparison between bonding provided by cement and biocement.” Acta Geotech. 16 (5): 1441–1456. https://doi.org/10.1007/s11440-021-01146-4.
Wang, Y., C. Konstantinou, K. Soga, G. Biscontin, and A. J. Kabla. 2022. “Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils.” Acta Geotech. 17 (9): 3817–3818. https://doi.org/10.1007/s11440-022-01478-9.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2019. “Microscale visualization of microbial-induced calcium carbonate precipitation processes.” J. Geotech. Geoenviron. Eng. 145 (9): 04019045. https://doi.org/10.1061/(asce)gt.1943-5606.0002079.
Wang, Y. H., and S. C. Leung. 2008a. “Characterization of cemented sand by experimental and numerical investigations.” J. Geotech. Geoenviron. Eng. 134 (7): 992–1004. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(992).
Wang, Y. H., and S. C. Leung. 2008b. “A particulate-scale investigation of cemented sand behavior.” Can. Geotech. J. 45 (1): 29–44. https://doi.org/10.1139/T07-070.
White, D. J., M. M. Mekkawy, S. Sritharan, and M. T. Suleiman. 2007. “‘Underlying’ causes for settlement of bridge approach pavement systems.” J. Perform. Constr. Facil. 21 (4): 273–282. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:4(273).
Won, J. Y., and P. W. Chang. 2007. “The causes of apparent overconsolidation in the Namak marine deposit, Korea.” Géotechnique 57 (4): 355–369. https://doi.org/10.1680/geot.2007.57.4.355.
Wu, E., J. Zhu, G. Chen, and L. Wang. 2020. “Experimental study of effect of gradation on compaction properties of rockfill materials.” Bull. Eng. Geol. Environ. 79 (6): 2863–2869. https://doi.org/10.1007/s10064-020-01737-7.
Wu, S., B. Li, and J. Chu. 2021. “Stress-dilatancy behavior of MICP-treated sand.” Int. J. Geomech. 21 (3): 04020264. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001923.
Xiao, Y., X. He, W. Wu, A. W. Stuedlein, T. M. Evans, J. Chu, H. Liu, L. A. van Paassen, and H. Wu. 2021. “Kinetic biomineralization through microfluidic chip tests.” Acta Geotech. 16 (10): 3229–3237. https://doi.org/10.1007/s11440-021-01205-w.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(asce)gm.1943-5622.0001497.
Yenes, M., S. Monterrubio, J. Nespereira, and D. Casas. 2020. “Apparent overconsolidation and its implications for submarine landslides.” Eng. Geol. 264 (Jan): 105375. https://doi.org/10.1016/j.enggeo.2019.105375.
Zhang, J., and R. Salgado. 2010. “Stress-dilatancy relation for Mohr–Coulomb soils following a non-associated flow rule.” Géotechnique 60 (3): 223–226. https://doi.org/10.1680/geot.8.T.039.
Zhao, H. F., L. M. Zhang, and D. S. Chang. 2013. “Behavior of coarse widely graded soils under low confining pressures.” J. Geotech. Geoenviron. Eng. 139 (1): 35–48. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000755.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 8August 2024

History

Received: Jul 6, 2023
Accepted: Mar 20, 2024
Published online: Jun 3, 2024
Published in print: Aug 1, 2024
Discussion open until: Nov 3, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, Dept. of Engineering, Univ. of Cambridge, Cambridge CB2 1PZ, UK (corresponding author). ORCID: https://orcid.org/0000-0002-8658-8743. Email: [email protected]
Professor, Dept. of Engineering, Univ. of Cambridge, Cambridge CB2 1PZ, UK. ORCID: https://orcid.org/0000-0003-3782-0099

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share