Case Studies
Aug 28, 2023

Thermohydraulic Numerical Modeling of Slope-Vegetation-Atmosphere Interaction: Case Study of the Pyroclastic Slope Cover at Monte Faito, Italy

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 11

Abstract

Flow-like landslides are recognized to be the most destructive slope movements and to threaten human life. They may occur in several geological settings, as is the case of the pyroclastic soil covers resting on either igneous, or carbonate, bedrocks. The pyroclastic soil strata involved in these shallow landslides typically are partially saturated over the whole year. Intense rainfall, considered at hourly time scale, represents the triggering factor because it causes the decrease in matric suction and the consequent decrease in soil shear strength. However, it is recognized as the role of the hydromechanical slope behavior, the vegetation cover, and the geomorphological irregularities on shallow landslide hazard. These factors should be properly simulated in physically based predictive models of the failure onset to set up a reliable early warning system (EWS). This paper presents a new coupled thermohydraulic modeling of a pyroclastic soil cover in Campania, accounting for several slope factors that may predispose landslide activation, including the geomorphological local irregularities. The Mount Faito test site, in the Lattari Mountains (Southern Italy), has been adopted as a prototype slope for the geomorphological and hydromechanical scenarios of reference because of the extensive field and laboratory characterizations of the soil strata already available from previous studies. Once validated with these data, the numerical model has been used to estimate the slope response to critical rainfall scenarios. Such numerical estimations have been then compared to the instability predictions currently provided by empirical approaches, defined in terms of the intensity and duration of rainstorms threshold of shallow landslide activations. By comparison between the empirical and physically based approaches, the crucial role of antecedent slope hydraulic conditions and the geological setting for implementing reliable EWS, reducing false alarms, is proved.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to acknowledge the support of the European Commission via the Marie Skłodowska-Curie Innovative. Training Networks (ITN-ETN) project TERRE, “Training Engineers and Researchers to Rethink Geotechnical Engineering for a Low-Carbon Future” (H2020-MSCA-ITN-2015-675762). Indeed, the authors have developed this work in the framework of the project titled “New technologies for in-time prediction of flowslide occurrence” (TEMPO). This project was conducted in the framework of the STAR program, financially supported by UniNA and Compagnia di San Paolo. The authors thank Prof. Antonio Santo, who provided the geological and stratigraphic data characterizing slope cross-sections, serving as the basis of the analyses carried out.

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.” FAO 300 (9): D05109.
Askarinejad, A., D. Akca, and S. M. Springman. 2018. “Precursors of instability in a natural slope due to rainfall: A full-scale experiment.” Landslides 15 (9): 1745–1759. https://doi.org/10.1007/s10346-018-0994-0.
ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-00. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM D792-20. West Conshohocken, PA: ASTM.
Balzano, B., A. Tarantino, M. V. Nicotera, G. Forte, M. de Falco, and A. Santo. 2019. “Building physically based models for assessing rainfall-induced shallow landslide hazard at catchment scale: Case study of the Sorrento Peninsula (Italy).” Can. Geotech. J. 56 (9): 1291–1303. https://doi.org/10.1139/cgj-2017-0611.
Bandini, A. 1931. “Tipi pluviometrici dominanti sulle regioni italiane.” [In Italian.] In Servizio Idrografico Italiano. Rome: Ministero dei Lavori Pubblici.
Brooks, R. H., and A. T. Corey. 1964. Hydraulic properties of porous media. Hydrology Paper No. 3. Fort Collins, CO: Colorado State Univ.
Calcaterra, D., R. De Riso, A. Evangelista, M. V. Nicotera, A. Santo, and A. Scotto di Santolo. 2003. “Slope instabilities in the pyroclastic deposits of the phlegraean district and the carbonate Apennine (Campania, Italy).” In Proc., Int. Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills, edited by L. Picarelli, 61–76. Bologna, Italy: Patron.
Calcaterra, D., M. Parise, B. Palma, and L. Pelella. 2000. “The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy.” In Landslides in research, theory and practice, 209–214. London: Thomas Telford.
Cascini, L., G. Sorbino, S. Cuomo, and S. Ferlisi. 2014. “Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy).” Landslides 11 (5): 779–792. https://doi.org/10.1007/s10346-013-0395-3.
Comegna, L., E. Damiano, R. Greco, A. Guida, L. Olivares, and L. Picarelli. 2016. “Field hydrological monitoring of a sloping shallow pyroclastic deposit.” Can. Geotech. J. 53 (7): 1125–1137. https://doi.org/10.1139/cgj-2015-0344.
Damiano, E., L. Olivares, and L. Picarelli. 2012. “Steep-slope monitoring in unsaturated pyroclastic soils.” Eng. Geol. 137 (Jun): 1–12. https://doi.org/10.1016/j.enggeo.2012.03.002.
De Vita, P., V. Allocca, F. Manna, and S. Fabbrocino. 2012. “Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy).” Hydrol. Earth Syst. Sci. 16 (5): 1389–1399. https://doi.org/10.5194/hess-16-1389-2012.
Dias, A. S., M. Pirone, M. V. Nicotera, and G. Urciuoli. 2021a. “Hydraulic characterization of an unsaturated vegetated soil: The role of plant roots and hydraulic hysteresis.” Geomech. Energy Environ. 30 (Jun): 100235. https://doi.org/10.1016/j.gete.2021.100235.
Dias, A. S., M. Pirone, M. V. Nicotera, and G. Urciuoli. 2021b. “Hydraulic hysteresis of natural pyroclastic soils in partially saturated conditions: Experimental investigation and modelling.” Acta Geotech. 17 (3): 837–855. https://doi.org/10.1007/s11440-021-01273-y.
Dias, A. S., A. Stokes, M. Pirone, and G. Urciuoli. 2020. “Castanea sativa Mill. plantations as a low-carbon landslide hazard mitigation measure.” In Vol. 205 of Proc., 2nd Int. Conf. on Energy Geotechnics (ICEGT 2020). Les Ulis, France: EDP Science.
Dias, A. S. R. A. 2019. “The effect of vegetation on slope stability of shallow pyroclastic soil covers.” Ph.D. thesis, Dept. of Civil, Building and Environmental Engineering, Univ. of Naples Federico II.
Di Maio, R., C. De Paola, G. Forte, E. Piegari, M. Pirone, A. Santo, and G. Urciuoli. 2020. “An integrated geological, geotechnical and geophysical approach to identify predisposing factors for flowslide occurrence.” Eng. Geol. 267 (Mar): 105473. https://doi.org/10.1016/j.enggeo.2019.105473.
Edlefsen, N. E., and A. B. Anderson. 1943. “Thermodynamics of soil moisture.” Hilgardia 15 (2): 31–298. https://doi.org/10.3733/hilg.v15n02p031.
Elia, G., et al. 2017. “Numerical modelling of slope-vegetation-atmosphere interaction: An overview.” Q. J. Eng. Geol. Hydrogeol. 50 (3): 249–270. https://doi.org/10.1144/qjegh2016-079.
Evangelista, A., M. V. Nicotera, and A. Scotto di Santolo. 2005. “Valutazione del ruolo degli strati pomicei nell’innesco dei fenomeni di colate di fango.” In Proc., Convegno Nazionale La mitigazione del rischio di colate di fango a Sarno e negli altri Comuni colpiti dagli eventi del maggio 1998, 125–140. Avellino, Italy: Commissariato di Governo per l’Emergenza Idrogeologica in Campania.
Foresta, V., V. Capobianco, and L. Cascini. 2019. “Influence of grass roots on shear strength of pyroclastic soils.” Can. Geotech. J. 57 (9): 1320–1334. https://doi.org/10.1139/cgj-2019-0142.
Forte, G., M. Pirone, A. Santo, M. V. Nicotera, and G. Urciuoli. 2019. “Triggering and predisposing factors for flow-like landslides in pyroclastic soils: The case study of the Lattari Mts. (southern Italy).” Eng. Geol. 257 (Jul): 105137. https://doi.org/10.1016/j.enggeo.2019.05.014.
Fredlund, D. G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. New York: Wiley.
Greco, R., L. Comegna, E. Damiano, A. Guida, L. Olivares, and L. Picarelli. 2013. “Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data.” Hydrol. Earth Syst. Sci. 17 (10): 4001–4013. https://doi.org/10.5194/hess-17-4001-2013.
Guadagno, F. M. 1991. “Debris flows in the Campanian volcaniclastic soil (Southern Italy).” In Slope stability engineering developments and applications, 125–130. London: Thomas Telford.
Harlan, R. L., and J. F. Nixon. 1978. Chap. 6 in Ground thermal regime, 103–163. New York: McGraw-Hill.
Ietto, F., F. Perri, and F. Cella. 2016. “Geotechnical and landslide aspects in weathered granitoid rock masses (Serre Massif, southern Calabria, Italy).” Catena 145 (Oct): 301–315. https://doi.org/10.1016/j.catena.2016.06.027.
Johansen, O. 1975. Thermal conductivity of soils. Translated by S. Rusetta and N. H. Nashua. Washington, DC: USACE.
Johnston, G. H., B. Ladanyi, N. R. Morgenstern, and E. Penner. 1981. “Engineering characteristics of frozen and thawing soils.” In Permafrost engineering design and construction, edited by G. H. Johnston, 73–148. New York: Wiley.
Kirkham, M. B. 2005. “Field capacity, wilting point, available water, and the non-limiting water range.” In Principles of soil and plant water relations, 101–115. Amsterdam, Netherlands: Elsevier.
Krahn, J. 2004a. Stability modeling with SLOPE/W: An engineering methodology. Calgary, AB, Canada: GEO-SLOPE/W International.
Krahn, J. 2004b. Vadose zone modeling with VADOSE/W: An engineering methodology. Calgary, AB, Canada: GEO-SLOPE/W International.
Laloui, L., A. Ferrari, C. Li, and J. Eichenberger. 2016. “Hydro-mechanical analysis of volcanic ash slopes during rainfall.” Géotechnique 66 (3): 220–231. https://doi.org/10.1680/jgeot.15.LM.001.
Li, W. C., F. C. Dai, Y. Q. Wei, M. L. Wang, H. Min, and L. M. Lee. 2016. “Implication of subsurface flow on rainfall-induced landslide: A case study.” Landslides 13 (5): 1109–1123. https://doi.org/10.1007/s10346-015-0619-9.
Lizárraga, J. J., and G. Buscarnera. 2018. “Safety factors to detect flowslides and slips in unsaturated shallow slopes.” Géotechnique 68 (5): 442–450. https://doi.org/10.1680/jgeot.17.T.003.
Marino, P., G. F. Santonastaso, X. Fan, and R. Greco. 2021. “Prediction of shallow landslides in pyroclastic-covered slopes by coupled modeling of unsaturated and saturated groundwater flow.” Landslides 18 (Jul): 31–41. https://doi.org/10.1007/s10346-020-01484-6.
Mikoš, M., A. Petkovšek, and B. Majes. 2009. “Mechanisms of landslides in over-consolidated clays and flysch.” Landslides 6 (Oct): 367–371. https://doi.org/10.1007/s10346-009-0171-6.
Miura, S., and K. Yagi. 2002. “Mechanical behaviour and particle crushing of volcanic coarse-grained soils in Japan.” In Vol. 2 of Proc., Int. Symp. Characterisation and Engineering Properties of Natural Soils, edited by T. S. Tan, K. K. Phoon, D. W. Hight and S. Leroueil, 1169–1204. Oxfordshire, UK: Taylor & Francis.
Morgenstern, N. R., and V. E. Price. 1965. “The analysis of the stability of general slip surface.” Géotechnique 15 (1): 79–93. https://doi.org/10.1680/geot.1965.15.1.79.
Mualem, Y. 1976. “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resour. Res. 12 (3): 513–522. https://doi.org/10.1029/WR012i003p00513.
Napolitano, E., F. Fusco, R. L. Baum, J. W. Godt, and P. De Vita. 2016. “Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy).” Landslides 13 (Oct): 967–983. https://doi.org/10.1007/s10346-015-0647-5.
Nicotera, M. V. 2000. “Interpretation of shear response upon wetting of natural unsaturated pyroclastic soils.” In Proc., Int. Workshop on Unsaturated Soils: Experimental Evidence and Theoretical Approaches, edited by A. Tarantino and C. Mancuso, 177–193. Rotterdam, Netherlands: Balkema.
Nicotera, M. V., R. Papa, and G. Urciuoli. 2010. “An experimental technique for determining the hydraulic properties of unsaturated pyroclastic soils.” Geotech. Test. J. 33 (4): 263–285. https://doi.org/10.1520/GTJ102769.
Nicotera, M. V., R. Papa, and G. Urciuoli. 2015. “The hydro-mechanical behaviour of unsaturated pyroclastic soils: An experimental investigation.” Eng. Geol. 195 (Mar): 70–84. https://doi.org/10.1016/j.enggeo.2015.05.023.
Olivares, L., and L. Picarelli. 2006. “Modelling of flowslides behaviour for risk mitigation.” In Vol. 1 of Proc., 6th Int. Conf. Physical Modelling in Geotechnics, 99–112. London: Taylor & Francis.
Pagano, L., L. Picarelli, G. Rianna, and G. Urciuoli. 2010. “A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils.” Landslides 7 (3): 273–289. https://doi.org/10.1007/s10346-010-0216-x.
Pagano, L., A. Reder, and G. Rianna. 2019. “Effects of vegetation on hydrological response of silty volcanic covers.” Can. Geotech. J. 56 (9): 1261–1277. https://doi.org/10.1139/cgj-2017-0625.
Pánek, T., J. Hradecký, J. Minár, and K. Šilhán. 2010. “Recurrent landslides predisposed by fault-induced weathering of flysch in the Western Carpathians.” Geol. Soc. Spec. Publ. 23 (1): 183–199. https://doi.org/10.1144/EGSP23.11.
Papa, R., M. Pirone, M. V. Nicotera, and G. Urciuoli. 2013. “Seasonal groundwater regime in an unsaturated pyroclastic slope.” Géotechnique 63 (5): 420–426. https://doi.org/10.1680/geot.11.P.049.
Pedone, G., A. Tsiampousi, F. Cotecchia, and L. Zdravkovic. 2021. “Coupled hydro-mechanical modelling of soil–vegetation–atmosphere interaction in natural clay slopes.” Can. Geotech. J. 59 (2): 272–290. https://doi.org/10.1139/cgj-2020-0479.
Pellegrino, A. 1967. “Proprietà fisico-meccaniche dei terreni vulcanici del napoletano.” In Proc., 8th Italian Geotechnical Conf. Il sottosuolo dei grandi centri urbani e industriali nei riguardi dei problemi geotecnici: Milano, Venezia, Mestre e Marghera, Napoli, 113–145. Roma, Italy: Associazione Geotecnica Italiana.
Penman, H. L. 1948. “Natural evaporation from open water, bare soil and grass.” Proc. R. Soc. London, Ser. A 193 (1032): 120–145. https://doi.org/10.1098/rspa.1948.0037.
Picarelli, L., L. Olivares, L. Comegna, and E. Damiano. 2008. “Mechanical aspects of flowlike movements in granular and fine grained soils.” Rock Mech. Rock Eng. 41 (1): 179–197. https://doi.org/10.1007/s00603-007-0135-x.
Picarelli, L., L. Olivares, E. Damiano, R. Darban, and A. Santo. 2020a. “The effects of extreme precipitations on landslide hazard in the pyroclastic deposits of Campania region: A review.” Landslides 17 (10): 2343–2358. https://doi.org/10.1007/s10346-020-01423-5.
Picarelli, L., L. Olivares, S. Lampitiello, R. Darban, and E. Damiano. 2020b. “The undrained behaviour of an air-fall volcanic ash.” Geosciences 10 (2): 60. https://doi.org/10.3390/geosciences10020060.
Piciullo, L., S. L. Gariano, M. Melillo, M. T. Brunetti, S. Peruccacci, F. Guzzetti, and M. Calvello. 2017. “Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides.” Landslides 14 (3): 995–1008. https://doi.org/10.1007/s10346-016-0750-2.
Pirone, M. 2010. “Analysis of slope failure mechanism in unsaturated pyroclastic soils, based on testing site monitoring.” Ph.D. thesis, Dept. of Civil, Building and Environmental Engineering, Università degli Studi di Napoli Federico II.
Pirone, M., R. Papa, M. V. Nicotera, and G. Urciuoli. 2015a. “Hydro-mechanical analysis of an unsaturated pyroclastic slope based on monitoring data.” In Vol. 2 of Proc., Engineering Geology for Society and Territory, 1069–1073. Berlin: Springer. https://doi.org/10.1007/978-3-319-09057-3_189.
Pirone, M., R. Papa, M. V. Nicotera, and G. Urciuoli. 2015b. “In situ monitoring of the groundwater field in an unsaturated pyroclastic slope for slope stability evaluation.” Landslides 12 (2): 259–276. https://doi.org/10.1007/s10346-014-0483-z.
Pirone, M., R. Papa, M. V. Nicotera, and G. Urciuoli. 2015c. “Soil water balance in an unsaturated pyroclastic slope for evaluation of soil hydraulic behaviour and boundary conditions.” J. Hydrol. 528 (May): 63–83. https://doi.org/10.1016/j.jhydrol.2015.06.005.
Pirone, M., R. Papa, M. V. Nicotera, and G. Urciuoli. 2016a. “Analysis of safety factor in unsaturated pyroclastic slope.” In Landslides and engineered slopes experience, theory and practice, 1647–1654. Boca Raton, FL: CRC Press.
Pirone, M., R. Papa, M. V. Nicotera, and G. Urciuoli. 2016b. “Hydraulic behaviour of unsaturated pyroclastic soil observed at different scales.” Procedia Eng. 158 (Jan): 182–187. https://doi.org/10.1016/j.proeng.2016.08.426.
Pirone, M., and G. Urciuoli. 2016. “Cyclical suction characteristics in unsaturated slopes.” In Proc., Int. workshop on Volcanic Rocks and Soils, 183–184. London: Taylor & Francis.
Rahardjo, H., R. B. Rezaur, E. C. Leong, E. E. Alonso, A. Lloret, and A. Gens. 2008. “Monitoring and modeling of slope response to climate changes.” In Landslides and engineered slopes, edited by Z. Chen, J.-M. Zhang, K. Ho, F.-Q. Wu, and Z.-K. Li. London: Taylor & Francis.
Reder, A., L. Pagano, L. Picarelli, and G. Rianna. 2016. “The role of the lowermost boundary conditions in the hydrological response of shallow sloping covers.” Landslides 14 (3): 861–873. https://doi.org/10.1007/s10346-016-0753-z.
Reder, A., G. Rianna, and L. Pagano. 2018. “Physically based approaches incorporating evaporation for early warning predictions of rainfall–induced landslides.” Nat. Hazards Earth Syst. Sci. 18 (1): 613–631. https://doi.org/10.5194/nhess-18-613-2018.
Ritchie, J. T. 1972. “Model for predicting evaporation from a row crop with incomplete cover.” Water Resour. Res. 8 (5): 1204–1213.
Santo, A., G. Di Crescenzo, G. Forte, R. Papa, M. Pirone, and G. Urciuoli. 2018. “Flow-type landslides in pyroclastic soils on flysch bedrock in southern Italy: The Bosco de’ Preti case study.” Landslides 15 (1): 63–82. https://doi.org/10.1007/s10346-017-0854-3.
Sitarenios, P., F. Casini, A. Askarinejad, and S. M. Springman. 2021. “Hydro-mechanical analysis of a surficial landslide triggered by artificial rainfall: The Ruedlingen field experiment.” Géotechnique 71 (2): 96–109. https://doi.org/10.1680/jgeot.18.P.188.
Slatyer, R. O. 1957. “The significance of the permanent wilting percentage in studies of plant and soil water relations.” Bot. Rev. 23 (10): 585–636. https://doi.org/10.1007/BF02869695.
Sorbino, G., and M. V. Nicotera. 2013. “Unsaturated soil mechanics in rainfall-induced flow landslides.” Eng. Geol. 165: 105–132. https://doi.org/10.1016/j.enggeo.2012.10.008.
Sorbino, G., C. Sica, and L. Cascini. 2010. “Susceptibility analysis of shallow landslides source areas using physically based models.” Nat. Hazards 53 (May): 313–332. https://doi.org/10.1007/s11069-009-9431-y.
Springman, S. M., A. Thielen, P. Kienzler, and S. Friedel. 2013. “A long-term field study for the investigation of rainfall-induced landslides.” Géotechnique 63 (14): 1177–1193. https://doi.org/10.1680/geot.11.P.142.
Tagarelli, V., and F. Cotecchia. 2020. “The effects of slope initialization on the numerical model predictions of the slope-vegetation-atmosphere interaction.” Geosciences 10 (2): 85. https://doi.org/10.3390/geosciences10020085.
Tratch, D. J. 1995. “A geotechnical engineering approach to plant transpiration and root water uptake.” Master thesis, Dept. of Civil Engineering, Univ. of Saskatchewan.
Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl, and A. W. Clifton. 1996. “Model for the prediction of shear strength with respect to soil suction.” Can. Geotech. J. 33 (3): 379–392. https://doi.org/10.1139/t96-060.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Wheeler, S. J., R. S. Sharma, and M. S. R. Buisson. 2003. “Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils.” Géotechnique 53 (1): 41–54. https://doi.org/10.1680/geot.2003.53.1.41.
Wilson, G. W., D. G. Fredlund, and S. L. Barbour. 1994. “Coupled soil-atmosphere modeling for soil evaporation.” Can. Geotech. J. 31 (Apr): 151–161. https://doi.org/10.1139/t94-021.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 11November 2023

History

Received: Aug 5, 2022
Accepted: Jun 26, 2023
Published online: Aug 28, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 28, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Fellow, Scuola Superiore Meridionale, Largo S. Marcellino, 10, Napoli 80138, Italy. ORCID: https://orcid.org/0000-0003-0416-6836. Email: [email protected]
Associate Professor, Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Napoli Federico II, Via Claudio, 21, Napoli 80125, Italy (corresponding author). ORCID: https://orcid.org/0000-0002-2959-5664. Email: [email protected]
Research Fellow, Dept. of Engineering, Durham Univ., Stockton Rd., Durham DH1 3LE, UK. ORCID: https://orcid.org/0000-0003-4577-7860. Email: [email protected]
Federica Cotecchia, Ph.D. [email protected]
Full Professor, Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Via Edoardo Orabona, 4, Bari 70125, Italy. Email: [email protected]
Gianfranco Urciuoli, Ph.D. [email protected]
Full Professor, Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Napoli Federico II, Via Claudio, 21, Napoli 80125, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share