Abstract

Cardiac electromechanics is a coupled multiphysics and multiscale problem. Of great interest to medicine and pharmacology is how the heart responds to changes in ion channel dynamics within the myocyte that are either caused by disease or by the administration of drugs. A successful model of cardiac mechanical response must therefore incorporate a first-principles description of electrophysiology of the cardiac myocyte including intracellular calcium dynamics, transmembrane ionic currents and action potential (AP) formation at the cellular level. This article reviews the evolution of electrophysiological models of cardiac ventricular myocytes in terms of coupled differential equations whose state variables include ion channel gating parameters, intracellular ionic concentrations and the membrane voltage. The myocytes are connected through gap junctions forming fibers, which in turn connect to form cardiac tissues. The electromechanical response of cardiac tissues is coupled through intracellular calcium dynamics and stretch induced/ modulated currents, and can be solved using suitable discretization schemes under appropriate initial and boundary conditions. We discuss in detail the single-cell dynamics of the ORd model of human ventricular myocytes and describe the propagation of AP in periodically paced 1D fibers and 2D tissues. The origin of tissue-level diseased conditions in altered subcellular dynamics are discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

Alexander Quinn, T., and P. Kohl. 2021. “Cardiac mechano-electric coupling: Acute effects of mechanical stimulation on heart rate and rhythm.” Physiol. Rev. 101 (1): 37–92. https://doi.org/10.1152/physrev.00036.2019.
Aliev, R. R., and A. V. Panfilov. 1996. “A simple two-variable model of cardiac excitation.” Chaos Solitons Fractals 7 (3): 293–301. https://doi.org/10.1016/0960-0779(95)00089-5.
Allen, D. G., and J. C. Kentish. 1985. “The cellular basis of the length-tension relation in cardiac muscle.” J. Mol. Cell Cardiol. 17 (9): 821–840. https://doi.org/10.1016/S0022-2828(85)80097-3.
Amin, A. S., H. L. Tan, and A. A. M. Wilde. 2010. “Cardiac ion channels in health and disease.” Heart Rhythm 7 (1): 117–126. https://doi.org/10.1016/j.hrthm.2009.08.005.
Antzelevitch, C., and A. Burashnikov. 2011. “Overview of basic mechanisms of cardiac arrhythmia.” Card. Electrophysiol. Clin. 3 (1): 23. https://doi.org/10.1016/j.ccep.2010.10.012.
Anumonwo, J. M., and S. V. Pandit. 2015. “Ionic mechanisms of arrhythmogenesis.” Trends Cardiovasc. Med. 25 (6): 487. https://doi.org/10.1016/j.tcm.2015.01.005.
Bakir, A. A., A. Al Abed, M. C. Stevens, N. H. Lovell, and S. Dokos. 2018. “A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device.” Front. Physiol. 9 (Sep): 1259. https://doi.org/10.3389/fphys.2018.01259.
Ball, F. G., and J. A. Rice. 1992. “Stochastic models for ion channels: Introduction and bibliography.” Math. Biosci. 112 (2): 189–206. https://doi.org/10.1016/0025-5564(92)90023-P.
Ball, J. M. 1976. “Convexity conditions and existence theorems in nonlinear elasticity.” Arch. Ration Mech. Anal. 63 (4): 337–403. https://doi.org/10.1007/BF00279992.
Bartolucci, C., E. Passini, J. Hyttinen, M. Paci, and S. Severi. 2020. “Simulation of the effects of extracellular calcium changes leads to a novel computational model of human ventricular action potential with a revised calcium handling.” Front. Physiol. 11 (Apr): 517775. https://doi.org/10.3389/fphys.2020.00314.
Beeler, G. W., and H. Reuter. 1977. “Reconstruction of the action potential of ventricular myocardial fibres.” J. Physiol. 268 (1): 177. https://doi.org/10.1113/jphysiol.1977.sp011853.
Bers, D. M. 2001. “Excitation-contraction coupling and cardiac contractile force.” In Developments in cardiovascular medicine. Dordrecht, Netherland: Springer.
Campbell, S. G., E. Howard, J. Aguado-Sierra, B. A. Coppola, J. H. Omens, L. J. Mulligan, A. D. McCulloch, and R. C. P. Kerckhoffs. 2009. “Effect of transmurally heterogeneous myocyte excitation–contraction coupling on canine left ventricular electromechanics.” Exp. Physiol. 94 (5): 541–552. https://doi.org/10.1113/expphysiol.2008.044057.
Carbonell-Pascual, B., E. Godoy, A. Ferrer, L. Romero, and J. M. Ferrero. 2016. “Comparison between Hodgkin-Huxley and Markov formulations of cardiac ion channels.” J. Theor. Biol. 399 (Jun): 92–102. https://doi.org/10.1016/j.jtbi.2016.03.039.
Chadwick, D., J. A. Goode, and Novartis Foundation. 2003. Development of the cardiac conduction system. Chichester, UK: Wiley.
Chadwick, R. S. 1982. “Mechanics of the left ventricle.” Biophys. J. 39 (3): 279–288. https://doi.org/10.1016/S0006-3495(82)84518-9.
Cherry, E. M., and F. H. Fenton. 2008. “Visualization of spiral and scroll waves in simulated and experimental cardiac tissue.” New J. Phys. 10 (12): 125016. https://doi.org/10.1088/1367-2630/10/12/125016.
Chung, C. S., C. W. Hoopes, and K. S. Campbell. 2017. “Myocardial relaxation is accelerated by fast stretch, not reduced afterload.” J. Mol. Cell Cardiol. 103 (Feb): 65–73. https://doi.org/10.1016/j.yjmcc.2017.01.004.
Clayton, R. H., and A. V. Panfilov. 2008. “A guide to modelling cardiac electrical activity in anatomically detailed ventricles.” Prog. Biophys. Mol. Biol. 96 (1–3): 19–43. https://doi.org/10.1016/j.pbiomolbio.2007.07.004.
Costa, K. D., J. W. Holmes, and A. D. McCulloch. 2001. “Modelling cardiac mechanical properties in three dimensions.” Philos. Trans. R. Soc. London, Ser. A 359 (1783): 1233–1250. https://doi.org/10.1098/rsta.2001.0828.
Decker, K. F., J. Heijman, J. R. Silva, T. J. Hund, and Y. Rudy. 2009. “Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.” Am. J. Physiol. Heart Circ. Physiol. 296 (4): H1017–H1026. https://doi.org/10.1152/ajpheart.01216.2008.
DiFrancesco, D., and D. Noble. 1985. “A model of cardiac electrical activity incorporating ionic pumps and concentration changes.” Philos. Trans. R. Soc. London, Ser. B 307 (1133): 353–398. https://doi.org/10.1098/rstb.1985.0001.
El-Sherif, N., W. Craelius, M. Boutjdir, and W. B. Gough. 1990. “Early afterdepolarizations and arrhythmogenesis.” J. Cardiovasc. Electrophysiol. 1 (2): 145–160. https://doi.org/10.1111/J.1540-8167.1990.TB01057.X.
Faber, G. M., J. Silva, L. Livshitz, and Y. Rudy. 2007. “Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: A theoretical investigation.” Biophys. J. 92 (5): 1522–1543. https://doi.org/10.1529/biophysj.106.088807.
Fenton, F., and A. Karma. 1998. “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation.” Chaos Interdiscip. J. Nonlinear Sci. 8 (1): 20. https://doi.org/10.1063/1.166311.
Fenton, F. H., E. M. Cherry, and L. Glass. 2008. “Cardiac arrhythmia.” Scholarpedia 3 (7): 1665. https://doi.org/10.4249/scholarpedia.1665.
Fink, M., and D. Noble. 2009. “Markov models for ion channels: Versatility versus identifiability and speed.” Philos. Trans. R. Soc. London, Ser. A 367 (1896): 2161–2179. https://doi.org/10.1098/rsta.2008.0301.
FitzHugh, R. 1961. “Impulses and physiological states in theoretical models of nerve membrane.” Biophys. J. 1 (6): 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6.
Fox, J. J., E. Bodenschatz, and R. F. Gilmour. 2002. “Period-doubling instability and memory in cardiac tissue.” Phys. Rev. Lett. 89 (13): 138101. https://doi.org/10.1103/PhysRevLett.89.138101.
Fung, Y. C. 1970. “Mathematical representation of the mechanical properties of the heart muscle.” J. Biomech. 3 (4): 381–404. https://doi.org/10.1016/0021-9290(70)90012-6.
Gao, H., D. Carrick, C. Berry, B. E. Griffith, and X. Luo. 2014. “Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method.” IMA J. Appl. Math. 79 (5): 978–1010. https://doi.org/10.1093/imamat/hxu029.
Göktepe, S., and E. Kuhl. 2010. “Electromechanics of the heart: A unified approach to the strongly coupled excitation-contraction problem.” Comput. Mech. 45 (2–3): 227–243. https://doi.org/10.1007/s00466-009-0434-z.
Göktepe, S., A. Menzel, and E. Kuhl. 2013. “Micro-structurally based kinematic approaches to electromechanics of the heart.” In Computer models in biomechanics, 175–187. Dordrecht, Netherlands: Springer.
Göktepe, S., A. Menzel, and E. Kuhl. 2014. “The generalized hill model: A kinematic approach towards active muscle contraction.” J. Mech. Phys. Solids 72 (1): 20. https://doi.org/10.1016/j.jmps.2014.07.015.
Göktepe, S., J. Wong, and E. Kuhl. 2010. “Atrial and ventricular fibrillation: Computational simulation of spiral waves in cardiac tissue.” Arch. Appl. Mech. 80 (5): 569–580. https://doi.org/10.1007/s00419-009-0384-0.
Grandi, E., F. S. Pasqualini, and D. M. Bers. 2010. “A novel computational model of the human ventricular action potential and Ca transient.” J. Mol. Cell Cardiol. 48 (1): 112–121. https://doi.org/10.1016/j.yjmcc.2009.09.019.
Grant, A. O. 2009. “Cardiac ion channels.” Circ. Arrhythm. Electrophysiol. 2 (2): 185–194. https://doi.org/10.1161/CIRCEP.108.789081.
Greenstein, J. L., R. Hinch, and R. L. Winslow. 2006. “Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.” Biophys. J. 90 (1): 77–91. https://doi.org/10.1529/biophysj.105.065169.
Greenstein, J. L., and R. L. Winslow. 2002. “An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.” Biophys. J. 83 (6): 2918. https://doi.org/10.1016/S0006-3495(02)75301-0.
Greenstein, J. L., R. Wu, S. Po, G. F. Tomaselli, and R. L. Winslow. 2000. “Role of the calcium-independent transient outward current ito1 in shaping action potential morphology and duration.” Circ. Res. 87 (11): 1026–1033. https://doi.org/10.1161/01.RES.87.11.1026.
Grider, M. H., R. Jessu, and R. Kabir. 2023. “Physiology, action potential.” StatPearls publishing. Accessed March 27, 2024. https://www.ncbi.nlm.nih.gov/books/NBK538143/.
Guan, D., H. Gao, L. Cai, and X. Luo. 2022. “A new active contraction model for the myocardium using a modified hill model.” Comput. Biol. Med. 145 (Jun): 105417. https://doi.org/10.1016/j.compbiomed.2022.105417.
Guccione, J. M., K. D. Costa, and A. D. McCulloch. 1995. “Finite element stress analysis of left ventricular mechanics in the beating dog heart.” J. Biomech. 28 (10): 1167–1177. https://doi.org/10.1016/0021-9290(94)00174-3.
Guccione, J. M., A. D. McCulloch, and L. K. Waldman. 1991. “Passive material properties of intact ventricular myocardium determined from a cylindrical model.” J. Biomech. Eng. 113 (1): 42–55. https://doi.org/10.1115/1.2894084.
Guo, D., Q. Liu, T. Liu, G. Elliott, M. Gingras, P. R. Kowey, and G. X. Yan. 2011. “Electrophysiological properties of HBI-3000: A new antiarrhythmic agent with multiple-channel blocking properties in human ventricular myocytes.” J. Cardiovasc. Pharmacol. 57 (1): 79–85. https://doi.org/10.1097/FJC.0b013e3181ffe8b3.
Hill, A. 1938. “The heat of shortening and the dynamic constants of muscle.” Proc. Biol. Sci. 126 (843): 136–195. https://doi.org/10.1098/RSPB.1938.0050.
Hill, T. L. 1983. “Two elementary models for the regulation of skeletal muscle contraction by calcium.” Biophys. J. 44 (3): 383–396. https://doi.org/10.1016/S0006-3495(83)84312-4.
Hille, B. 2001. Ion channels of excitable membranes. 3rd ed. Sunderland, MA: Sinaur Associates.
Hodgkin, A. L., and A. F. Huxley. 1952. “A quantitative description of membrane current and its application to conduction and excitation in nerve.” J. Physiol. 117 (4): 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764.
Hoffman, B. F., and M. R. Rosen. 1981. “Cellular mechanisms for cardiac arrhythmias.” Circ. Res. 49 (1): 1–15. https://doi.org/10.1161/01.RES.49.1.1.
Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. 2000. “A new constitutive framework for arterial wall mechanics and a comparative study of material models.” J. Elast. 61 (1–3): 1–48. https://doi.org/10.1023/A:1010835316564.
Holzapfel, G. A., and R. W. Ogden. 2009. “Constitutive modelling of passive myocardium: A structurally based framework for material characterization.” Philos. Trans. R. Soc. London, Ser. A 367 (1902): 3445–3475. https://doi.org/10.1098/rsta.2009.0091.
Huikuri, H. V., A. Castellanos, and R. J. Myerburg. 2001. “Sudden death due to cardiac arrhythmias.” N. Engl. J. Med. 345 (20): 1473–1482. https://doi.org/10.1056/NEJMra000650.
Humphrey, J. D., R. K. Strumpf, and F. C. P. Yin. 1990. “Determination of a constitutive relation for passive myocardium: I. A new functional form.” J. Biomech. Eng. 112 (3): 333–339. https://doi.org/10.1115/1.2891193.
Humphrey, J. D., and F. C. P. Yin. 1987. “On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.” J. Biomech. Eng. 109 (4): 298–304. https://doi.org/10.1115/1.3138684.
Hund, T. J., and Y. Rudy. 2004. “Rate Dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model.” Circulation 110 (20): 3168–3174. https://doi.org/10.1161/01.CIR.0000147231.69595.D3.
Hunter, P. J., A. D. McCulloch, and H. E. D. J. Ter Keurs. 1998. “Modelling the mechanical properties of cardiac muscle.” Prog. Biophys. Mol. Biol. 69 (2–3): 289–331. https://doi.org/10.1016/S0079-6107(98)00013-3.
Huxley, A. F. 1957. “Muscle structure and theories of contraction.” Prog. Biophys. Biophys. Chem. 7 (Jan): 255–318. https://doi.org/10.1016/S0096-4174(18)30128-8.
Iyer, V., R. Mazhari, and R. L. Winslow. 2004. “A computational model of the human left-ventricular epicardial myocyte.” Biophys. J. 87 (3): 1507–1525. https://doi.org/10.1529/biophysj.104.043299.
Jafri, M. S. 2012. “Models of excitation-contraction coupling in cardiac ventricular myocytes.” In Vol. 910 of Bioinformatics and Drug Discovery. Methods in Molecular Biology, edited by R. Larson, 309–335. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-965-5_14.
Jafri, M. S., J. J. Rice, and R. L. Winslow. 1998. “Cardiac Ca2+ dynamics: The roles of ryanodine receptor adaptation and sarcoplasmic reticulum load.” Biophys. J. 74 (3): 1149–1168. https://doi.org/10.1016/S0006-3495(98)77832-4.
Julian, F. J. 1969. “Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle.” Biophys. J. 9 (4): 547–570. https://doi.org/10.1016/S0006-3495(69)86403-9.
Keener, J., and J. Sneyd. 1998. “Mathematical physiology.” In Interdisciplinary applied mathematics. New York: Springer.
Kléber, A. G., and Y. Rudy. 2004. “Basic mechanisms of cardiac impulse propagation and associated arrhythmias.” Physiol. Rev. 84 (2): 431–488. https://doi.org/10.1152/physrev.00025.2003.
Ko, C. Y., M. B. Liu, Z. Song, Z. Qu, and J. N. Weiss. 2017. “Multiscale determinants of delayed afterdepolarization amplitude in cardiac tissue.” Biophys. J. 112 (9): 1949–1961. https://doi.org/10.1016/j.bpj.2017.03.006.
Kohl, P., and U. Ravens. 2003. “Cardiac mechano-electric feedback: Past, present, and prospect.” Prog. Biophys. Mol. Biol. 82 (1–3): 3–9. https://doi.org/10.1016/S0079-6107(03)00022-1.
Koller, M. L., S. K. G. Maier, A. R. Gelzer, W. R. Bauer, M. Meesmann, and R. F. Gilmour. 2005. “Altered Dynamics of action potential restitution and alternans in humans with structural heart disease.” Circulation 112 (11): 1542–1548. https://doi.org/10.1161/CIRCULATIONAHA.104.502831.
Krogh-Madsen, T., and D. J. Christini. 2012. “Nonlinear dynamics in cardiology.” Ann. Rev. Biomed. Eng. 14 (Aug): 179. https://doi.org/10.1146/annurev-bioeng-071811-150106.
Kupersmith, J., and P. Hoff. 1985. “Occurrence and transmission of localized repolarization abnormalities in vitro.” J. Am. Coll. Cardiol. 6 (1): 152–160. https://doi.org/10.1016/S0735-1097(85)80267-9.
Lampert, A., and A. Korngreen. 2014. “Markov modeling of ion channels: Implications for understanding disease.” Prog. Mol. Biol. Transl. Sci. 123 (Jan): 1–21. https://doi.org/10.1016/B978-0-12-397897-4.00009-7.
Land, S., et al. 2014. “Computational modeling of Takotsubo cardiomyopathy: Effect of spatially varying β-adrenergic stimulation in the rat left ventricle.” Am. J. Physiol. Heart Circ. Physiol. 307 (10): H1487–H1496. https://doi.org/10.1152/ajpheart.00443.2014.
Land, S., W. E. Louch, S. A. Niederer, J. M. Aronsen, G. Christensen, I. Sjaastad, O. M. Sejersted, and N. P. Smith. 2013a. “Beta-adrenergic stimulation maintains cardiac function in serca2 knockout mice.” Biophys. J. 104 (6): 1349–1356. https://doi.org/10.1016/j.bpj.2013.01.042.
Land, S., S. A. Niederer, J. M. Aronsen, E. K. S. Espe, L. Zhang, W. E. Louch, I. Sjaastad, O. M. Sejersted, and N. P. Smith. 2012. “An analysis of deformation-dependent electromechanical coupling in the mouse heart.” J. Physiol. 590 (18): 4553–4569. https://doi.org/10.1113/jphysiol.2012.231928.
Land, S., S. A. Niederer, W. E. Louch, O. M. Sejersted, and N. P. Smith. 2013b. “Integrating multi-scale data to create a virtual physiological mouse heart.” Interface Focus 3 (2): 20120076. https://doi.org/10.1098/rsfs.2012.0076.
Luo, C. H., and Y. Rudy. 1991. “A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction.” Circ. Res. 68 (6): 1501–1526. https://doi.org/10.1161/01.RES.68.6.1501.
Luo, C. H., and Y. Rudy. 1994. “A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation.” Circ. Res. 74 (6): 1097–1113. https://doi.org/10.1161/01.RES.74.6.1097.
Marsh, M. E., S. T. Ziaratgahi, and R. J. Spiteri. 2012. “The secrets to the success of the Rush-Larsen method and its generalizations.” IEEE Trans. Biomed. Eng. 59 (9): 2506–2515. https://doi.org/10.1109/TBME.2012.2205575.
McAllister, R. E., D. Noble, and R. W. Tsien. 1975. “Reconstruction of the electrical activity of cardiac Purkinje fibres.” J. Physiol. 251 (1): 1–59. https://doi.org/10.1113/jphysiol.1975.sp011080.
Mehra, R. 2007. “Global public health problem of sudden cardiac death.” J. Electrocardiol. 40 (6): S118–S122. https://doi.org/10.1016/j.jelectrocard.2007.06.023.
Nagumo, J., S. Arimoto, and S. Yoshizawa. 1962. “An active pulse transmission line simulating nerve Axon*.” Proc. IRE 50 (10): 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235.
Nash, M. P., and P. J. Hunter. 2000. “Computational mechanics of the heart. From tissue structure to ventricular function.” J. Elast. 61 (1–3): 113–141. https://doi.org/10.1023/A:1011084330767.
Nash, M. P., and A. V. Panfilov. 2004. “Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.” Prog. Biophys. Mol. Biol. 85 (2–3): 501–522. https://doi.org/10.1016/j.pbiomolbio.2004.01.016.
Nayak, A. R., T. K. Shajahan, A. V. Panfilov, and R. Pandit. 2013. “Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts.” PLoS One 8 (9): e72950. https://doi.org/10.1371/journal.pone.0072950.
Niederer, S. A., P. J. Hunter, and N. P. Smith. 2006. “A quantitative analysis of cardiac myocyte relaxation: A simulation study.” Biophys. J. 90 (5): 1697–1722. https://doi.org/10.1529/biophysj.105.069534.
Niederer, S. A., and N. P. Smith. 2007. “A Mathematical model of the slow force response to stretch in rat ventricular myocytes.” Biophys. J. 92 (11): 4030–4044. https://doi.org/10.1529/biophysj.106.095463.
Noble, D. 1962. “A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials.” J. Physiol. 160 (2): 317. https://doi.org/10.1113/jphysiol.1962.sp006849.
Nordin, C. 1993. “Computer model of membrane current and intracellular Ca2+ flux in the isolated guinea pig ventricular myocyte.” Am. J. Physiol. Heart Circ. Physiol. 265 (6): H2117–H2136. https://doi.org/10.1152/ajpheart.1993.265.6.H2117.
Nordsletten, D., A. Capilnasiu, W. Zhang, A. Wittgenstein, M. Hadjicharalambous, G. Sommer, R. Sinkus, and G. A. Holzapfel. 2021. “A viscoelastic model for human myocardium.” Acta Biomater. 135 (Nov): 441–457. https://doi.org/10.1016/j.actbio.2021.08.036.
Nordsletten, D. A., S. A. Niederer, M. P. Nash, P. J. Hunter, and N. P. Smith. 2011. “Coupling multi-physics models to cardiac mechanics.” Prog. Biophys. Mol. Biol. 104 (1–3): 77–88. https://doi.org/10.1016/j.pbiomolbio.2009.11.001.
O’Hara, T., L. Virág, A. Varró, and Y. Rudy. 2011. “Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation.” PLoS Comput. Biol. 7 (5): e1002061. https://doi.org/10.1371/journal.pcbi.1002061.
Owen, B., N. Bojdo, A. Jivkov, B. Keavney, and A. Revell. 2018. “Structural modelling of the cardiovascular system.” Biomech. Model Mechanobiol. 17 (5): 1217–1242. https://doi.org/10.1007/s10237-018-1024-9.
Palit, A., P. Franciosa, S. K. Bhudia, T. N. Arvanitis, G. A. Turley, and M. A. Williams. 2017. “Passive diastolic modelling of human ventricles: Effects of base movement and geometrical heterogeneity.” J. Biomech. 52 (Feb): 95–105. https://doi.org/10.1016/j.jbiomech.2016.12.023.
Parmley, W. W., and E. H. Sonnenblick. 1967. “Series elasticity in heart muscle. Its relation to contractile element velocity and proposed muscle models.” Circ. Res. 20 (1): 112–123. https://doi.org/10.1161/01.RES.20.1.112.
Perego, M., and A. Veneziani. 2009. “An efficient generalization of the Rush-Larsen method for solving electrophysiology membrane equations.” Electron. Trans. Numerical Anal. 35 (Jan): 234–256.
Pfeiffer, E. R., J. R. Tangney, J. H. Omens, and A. D. McCulloch. 2014. “Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.” J. Biomech. Eng. 136 (2): 0210071. https://doi.org/10.1115/1.4026221.
Pinnell, J., S. Turner, and S. Howell. 2007. “Cardiac muscle physiology.” Continuing Educ. Anaesth. Crit. Care Pain 7 (3): 85–88. https://doi.org/10.1093/bjaceaccp/mkm013.
Priebe, L., and D. J. Beuckelmann. 1998. “Simulation study of cellular electric properties in heart failure.” Circ. Res. 82 (11): 1206–1223. https://doi.org/10.1161/01.RES.82.11.1206.
Prust, M. J., W. G. Stevenson, G. R. Strichartz, and L. S. Lilly. 2012. “Mechanisms of cardiac arrhythmias.” Revista Española de Cardiología 65 (2): 174–185. https://doi.org/10.1016/J.REC.2011.09.020.
Qu, Z., G. Hu, A. Garfinkel, and J. N. Weiss. 2014. “Nonlinear and stochastic dynamics in the heart.” Phys. Rep. 543 (2): 61–162. https://doi.org/10.1016/j.physrep.2014.05.002.
Qu, Z., and J. N. Weiss. 2006. “Dynamics and cardiac arrhythmias.” J. Cardiovasc. Electrophysiol. 17 (9): 1042–1049. https://doi.org/10.1111/j.1540-8167.2006.00567.x.
Quarteroni, A., T. Lassila, S. Rossi, and R. Ruiz-Baier. 2017. “Integrated heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function.” Comput. Methods Appl. Mech. Eng. 314 (Feb): 345–407. https://doi.org/10.1016/j.cma.2016.05.031.
Regazzoni, F., L. Dedè, and A. Quarteroni. 2018. “Active contraction of cardiac cells: A reduced model for sarcomere dynamics with cooperative interactions.” Biomech. Model Mechanobiol. 17 (6): 1663–1686. https://doi.org/10.1007/s10237-018-1049-0.
Rice, J. J., F. Wang, D. M. Bers, and P. P. De Tombe. 2008. “Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations.” Biophys. J. 95 (5): 2368–2390. https://doi.org/10.1529/biophysj.107.119487.
Rush, S., and H. Larsen. 1978. “A practical algorithm for solving dynamic membrane equations.” IEEE Trans. Biomed. Eng. BME-25 (4): 389–392. https://doi.org/10.1109/TBME.1978.326270.
Santiago, A., J. Aguado-Sierra, M. Zavala-Aké, R. Doste-Beltran, S. Gómez, R. Arís, J. C. Cajas, E. Casoni, and M. Vázquez. 2018. “Fully coupled fluid-electro-mechanical model of the human heart for supercomputers.” Int. J. Numer. Method Biomed. Eng. 34 (12): e3140. https://doi.org/10.1002/cnm.3140.
Sato, D., L. H. Xie, T. P. Nguyen, J. N. Weiss, and Z. Qu. 2010. “Irregularly appearing early afterdepolarizations in cardiac myocytes: Random fluctuations or dynamical chaos?” Biophys. J. 99 (3): 765–773. https://doi.org/10.1016/j.bpj.2010.05.019.
Sato, D., L. H. Xie, A. A. Sovari, D. X. Tran, N. Morita, F. Xie, H. Karagueuzian, A. Garfinkel, J. N. Weiss, and Z. Qu. 2009. “Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias.” Proc. Natl. Acad. Sci. U.S.A. 106 (9): 2983–2988. https://doi.org/10.1073/pnas.0809148106.
Schmid, H., P. O’Callaghan, M. P. Nash, W. Lin, I. J. LeGrice, B. H. Smaill, A. A. Young, and P. J. Hunter. 2008. “Myocardial material parameter estimation: A non-homogeneous finite element study from simple shear tests.” Biomech. Model Mechanobiol. 7 (3): 161–173. https://doi.org/10.1007/s10237-007-0083-0.
Shampine, L. F., and M. W. Reichelt. 1997. “The MATLAB ode suite.” SIAM J. Sci. Comput. 18 (1): 1–22. https://doi.org/10.1137/S1064827594276424.
Shannon, T. R., F. Wang, J. Puglisi, C. Weber, and D. M. Bers. 2004. “A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.” Biophys. J. 87 (5): 3351–3371. https://doi.org/10.1529/biophysj.104.047449.
Siekmann, I., L. E. Wagner, D. Yule, C. Fox, D. Bryant, E. J. Crampin, and J. Sneyd. 2011. “MCMC estimation of Markov models for ion channels.” Biophys. J. 100 (8): 1919–1929. https://doi.org/10.1016/j.bpj.2011.02.059.
Sigg, D. 2014. “Modeling ion channels: Past, present, and future.” J. General Physiol. 144 (1): 7–26. https://doi.org/10.1085/jgp.201311130.
Šilhavý, M. 1997. The mechanics and thermodynamics of continuous media. Berlin: Springer.
Song, Z., C. Y. Ko, M. Nivala, J. N. Weiss, and Z. Qu. 2015. “Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes.” Biophys. J. 108 (8): 1908–1921. https://doi.org/10.1016/j.bpj.2015.03.011.
Srinivasan, N. T., and R. J. Schilling. 2018. “Clinical review: Arrhythmias sudden cardiac death and arrhythmias.” Citation Arrhythmia Electrophysiol. Rev. 7 (2): 111. https://doi.org/10.15420/aer.2018.15.2.
Tanskanen, A. J., and L. H. R. Alvarez. 2007. “Voltage noise influences action potential duration in cardiac myocytes.” Math. Biosci. 208 (1): 125–146. https://doi.org/10.1016/j.mbs.2006.09.023.
Tanskanen, A. J., J. L. Greenstein, B. O’Rourke, and R. L. Winslow. 2005. “The role of stochastic and modal gating of cardiac L-Type Ca2+ channels on early after-depolarizations.” Biophys. J. 88 (1): 85–95. https://doi.org/10.1529/biophysj.104.051508.
Ten Tusscher, K. H. W. J., D. Noble, P. J. Noble, and A. V. Panfilov. 2004. “A model for human ventricular tissue.” Am. J. Physiol. Heart Circ. Physiol. 286 (4): H1573–H1589. https://doi.org/10.1152/ajpheart.00794.2003.
Tomek, J., et al. 2019. “Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block.” Elife 8 (Dec): e48890. https://doi.org/10.7554/eLife.48890.
Vandersickel, N., I. V. Kazbanov, A. Nuitermans, L. D. Weise, R. Pandit, and A. V. Panfilov. 2014. “A study of early afterdepolarizations in a model for human ventricular tissue.” PLoS One 9 (1): e84595. https://doi.org/10.1371/journal.pone.0084595.
Varró, A., J. Tomek, N. Nagy, L. Virág, E. Passini, B. Rodriguez, and I. Baczkó. 2021. “Cardiac transmembrane ion channels and action potentials: Cellular physiology and arrhythmogenic behavior.” Physiol. Rev. 101 (3): 1083–1176. https://doi.org/10.1152/physrev.00024.2019.
Weber, A. 1959. “On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin.” J. Biol. Chem. 234 (10): 2764–2769. https://doi.org/10.1016/S0021-9258(18)69777-7.
Weiss, J. N., A. Garfinkel, H. S. Karagueuzian, P. S. Chen, and Z. Qu. 2010. “Early afterdepolarizations and cardiac arrhythmias.” Heart Rhythm 7 (12): 1891–1899. https://doi.org/10.1016/j.hrthm.2010.09.017.
Wellens, H. J. J., K. I. Lie, and M. J. Janse. 1978. The conduction system of the heart: Structure, function and clinical implications. Dordrecht, Netherlands: Springer.
Winslow, R. L., J. Rice, S. Jafri, E. Marbán, and B. O’Rourke. 1999. “Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: Model studies.” Circ. Res. 84 (5): 571–586. https://doi.org/10.1161/01.RES.84.5.571.
Wong, J., S. Göktepe, and E. Kuhl. 2011. “Computational modeling of electrochemical coupling: A novel finite element approach towards ionic models for cardiac electrophysiology.” Comput. Methods Appl. Mech. Eng. 200 (45–46): 3139–3158. https://doi.org/10.1016/j.cma.2011.07.003.
Xie, F., Z. Qu, J. Yang, A. Baher, J. N. Weiss, and A. Garfinkel. 2004. “A simulation study of the effects of cardiac anatomy in ventricular fibrillation.” J. Clin. Invest. 113 (5): 686–693. https://doi.org/10.1172/jci17341.
Xie, Y., D. Sato, A. Garfinkel, Z. Qu, and J. N. Weiss. 2010. “So little source, so much sink: Requirements for afterdepolarizations to propagate in tissue.” Biophys. J. 99 (5): 1408–1415. https://doi.org/10.1016/j.bpj.2010.06.042.
Yang, P. C., K. R. Demarco, P. Aghasafari, M. T. Jeng, J. R. D. Dawson, S. Bekker, S. Y. Noskov, V. Yarov-Yarovoy, I. Vorobyov, and C. E. Clancy. 2020. “A computational pipeline to predict cardiotoxicity: From the atom to the rhythm.” Circ. Res. 126 (8): 947–964. https://doi.org/10.1161/CIRCRESAHA.119.316404.
Yingchoncharoen, T., S. Agarwal, Z. B. Popović, and T. H. Marwick. 2013. “Normal ranges of left ventricular strain: A meta-analysis.” J. Am. Soc. Echocardiography 26 (2): 185–191. https://doi.org/10.1016/j.echo.2012.10.008.
Zhang, Z., M. B. Liu, X. Huang, Z. Song, and Z. Qu. 2021. “Mechanisms of premature ventricular complexes caused by QT prolongation.” Biophys. J. 120 (2): 352–369. https://doi.org/10.1016/j.bpj.2020.12.001.
Zhang, Z., and Z. Qu. 2021. “Mechanisms of phase-3 early afterdepolarizations and triggered activities in ventricular myocyte models.” Physiol. Rep. 9 (11): e14883. https://doi.org/10.14814/phy2.14883.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 7July 2024

History

Received: Aug 16, 2023
Accepted: Jan 16, 2024
Published online: Apr 16, 2024
Published in print: Jul 1, 2024
Discussion open until: Sep 16, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India. ORCID: https://orcid.org/0009-0001-3920-4575. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India. ORCID: https://orcid.org/0009-0008-2222-2532. Email: [email protected]
Lecturer, Dept. of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins Univ., Baltimore, MD 21218; Associate Research Scientist, Institute for Computational Medicine, Johns Hopkins Univ., Baltimore, MD 21218. ORCID: https://orcid.org/0000-0002-6193-7134. Email: [email protected]
Raimond L. Winslow [email protected]
Professor, College of Engineering; Khoury College of Computer Sciences; Bouve College of Health Sciences; Director, Life Sciences and Medical Research, Roux Institute at Northeastern Univ., Portland, ME 04102. Email: [email protected]
Visiting Professor, Dept. of Civil and Environmental Engineering, Univ. of Delaware, Newark, DE 19711; Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India (corresponding author). ORCID: https://orcid.org/0000-0002-8758-7486. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share