Technical Papers
Aug 10, 2023

Size-Dependent Nonlinear Free and Forced Vibration Analyses of a Functionally Graded Microplate Subjected to Transverse Patch Loading

Publication: Journal of Engineering Mechanics
Volume 149, Issue 10

Abstract

This paper presents a semianalytical methodology for the nonlinear vibration of a functionally graded microplate under transverse patch loadings. The higher-order shear deformation theory (HSDT) is combined with the modified strain gradient theory (MSGT) to model the microplate. The power-law function is used to model the functionally graded material. Hamilton’s principle is used to obtain the governing partial differential equations of motion, which are then solved using Galerkin’s method. The nonlinear free and forced vibration responses are obtained using the incremental harmonic balance (IHB) method, where the incremental part is performed using the arc-length continuation methods. The dependence of the steady-state amplitude on the amplitude of initial perturbation is studied using time history plots. These are plotted using the Newmark-β method. The effects of various parameters such as the power-law index, thickness of plate, thickness to material length scale parameter ratio, damping coefficient, different boundary conditions, and different positions of patch loading and its concentrations on the nonlinear free and forced vibration characteristics are examined in detail.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Akgöz, B., and Ö. Civalek. 2015. “A novel microstructure-dependent shear deformable beam model.” Int. J. Mech. Sci. 99 (Aug): 10–20. https://doi.org/10.1016/j.ijmecsci.2015.05.003.
Amabili, M. 2008. Nonlinear vibrations and stability of shells and plates. Cambridge, UK: Cambridge University Press.
Ansari, R., M. A. Ashrafi, and A. Arjangpay. 2015a. “An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory.” Appl. Math. Modell. 39 (10–11): 3050–3062. https://doi.org/10.1016/j.apm.2014.11.029.
Ansari, R., R. Gholami, M. F. Shojaei, V. Mohammadi, and M. A. Darabi. 2015b. “Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position.” Compos. Struct. 127 (Sep): 87–98. https://doi.org/10.1016/j.compstruct.2015.02.082.
Ansari, R., M. F. Shojaei, V. Mohammadi, R. Gholami, and M. A. Darabi. 2014. “Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory.” Compos. Struct. 114 (Aug): 124–134. https://doi.org/10.1016/j.compstruct.2014.04.013.
Arefi, M., E. M.-R. Bidgoli, and T. Rabczuk. 2019. “Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT.” Thin-Walled Struct. 142 (Sep): 444–459. https://doi.org/10.1016/j.tws.2019.04.054.
Arefi, M., and T. Rabczuk. 2019. “A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell.” Composites, Part B 168 (Jul): 496–510. https://doi.org/10.1016/j.compositesb.2019.03.065.
Ashby, M. F. 1970. “The deformation of plastically non-homogeneous materials.” Philos. Mag. A 21 (170): 399–424. https://doi.org/10.1080/14786437008238426.
Babu, B., and B. P. Patel. 2019a. “Analytical solution for strain gradient elastic Kirchhoff rectangular plates under transverse static loading.” Eur. J. Mech. A. Solids 73 (Jan): 101–111. https://doi.org/10.1016/j.euromechsol.2018.07.007.
Babu, B., and B. P. Patel. 2019b. “A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff’s plate theory.” Composites, Part B 168 (Jul): 302–311. https://doi.org/10.1016/j.compositesb.2018.12.066.
Bajkowski, J., and W. Szemplińska-Stupnicka. 1986. “Internal resonances effects—Simulation versus analytical methods results.” J. Sound Vib. 104 (2): 259–275. https://doi.org/10.1016/0022-460X(86)90267-1.
Bashir, R., A. Gupta, G. W. Neudeck, M. McElfresh, and R. Gomez. 2000. “On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications.” J. Micromech. Microeng. 10 (3): 483–491. https://doi.org/10.1088/0960-1317/10/4/301.
Behera, L., and S. Chakraverty. 2017. “Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review.” Arch. Comput. Methods Eng. 24 (Jul): 481–494. https://doi.org/10.1007/s11831-016-9179-y.
Carr, D. W., and H. G. Craighead. 1997. “Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography.” J. Vac. Sci. Technol., B 15 (6): 2760–2763. https://doi.org/10.1116/1.589722.
Chen, W., C. Weiwei, and K. Y. Sze. 2012. “A model of composite laminated Reddy beam based on a modified couple-stress theory.” Compos. Struct. 94 (8): 2599–2609. https://doi.org/10.1016/j.compstruct.2012.02.020.
Cheung, Y. K., S. H. Chen, and S. L. Lau. 1990. “Application of the incremental harmonic balance method to cubic non-linearity systems.” J. Sound Vib. 140 (2): 273–286. https://doi.org/10.1016/0022-460X(90)90528-8.
Civalek, Ö., B. Uzun, and M. Ö. Yaylı. 2022. “An effective analytical method for buckling solutions of a restrained FGM nonlocal beam.” Comput. Appl. Math. 41 (2): 67. https://doi.org/10.1007/s40314-022-01761-1.
Darijani, H., and H. Mohammadabadi. 2014. “A new deformation beam theory for static and dynamic analysis of microbeams.” Int. J. Mech. Sci. 89 (Dec): 31–39. https://doi.org/10.1016/j.ijmecsci.2014.08.019.
Das, D. 2019. “Nonlinear forced vibration analysis of higher order shear-deformable functionally graded microbeam resting on nonlinear elastic foundation based on modified couple stress theory.” Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 233 (9): 1773–1790. https://doi.org/10.1177/1464420718789716.
Ebrahimi, F., M. R. Barati, and Ö. Civalek. 2020. “Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures.” Eng. Comput. 36 (Jul): 953–964. https://doi.org/10.1007/s00366-019-00742-z.
Farokhi, H., M. H. Ghayesh, and M. Amabili. 2013. “Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory.” Int. J. Eng. Sci. 68 (Jul): 11–23. https://doi.org/10.1016/j.ijengsci.2013.03.001.
Fleck, N. A., G. M. Muller, M. F. Ashby, and J. W. Hutchinson. 1994. “Strain gradient plasticity: Theory and experiment.” Acta Metall. Mater. 42 (2): 475–487. https://doi.org/10.1016/0956-7151(94)90502-9.
Fu, Y., H. Du, and S. Zhang. 2003. “Functionally graded TiN/TiNi shape memory alloy films.” Mater. Lett. 57 (20): 2995–2999. https://doi.org/10.1016/S0167-577X(02)01419-2.
Ghayesh, M. H. 2019. “Mechanics of viscoelastic functionally graded microcantilevers.” Eur. J. Mech. A. Solids 73 (Jan): 492–499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
Ghayesh, M. H., M. Amabili, and H. Farokhi. 2013a. “Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams.” Int. J. Eng. Sci. 71 (Oct): 1–14. https://doi.org/10.1016/j.ijengsci.2013.04.003.
Ghayesh, M. H., H. Farokhi, and M. Amabili. 2013b. “Nonlinear dynamics of a microscale beam based on the modified couple stress theory.” Composites, Part B 50 (Jul): 318–324. https://doi.org/10.1016/j.compositesb.2013.02.021.
Gholami, R., and R. Ansari. 2016. “A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates.” Nonlinear Dyn. 84 (Jun): 2403–2422. https://doi.org/10.1007/s11071-016-2653-0.
Gholami, Y., R. Ansari, and R. Gholami. 2020. “Three-dimensional nonlinear primary resonance of functionally graded rectangular small-scale plates based on strain gradeint elasticity theory.” Thin-Walled Struct. 150 (May): 106681. https://doi.org/10.1016/j.tws.2020.106681.
Ghorbani, K., A. Rajabpour, and M. Ghadiri. 2021. “Determination of carbon nanotubes size-dependent parameters: Molecular dynamics simulation and nonlocal strain gradient continuum shell model.” Mech. Based Des. Struct. Mach. 49 (1): 103–120. https://doi.org/10.1080/15397734.2019.1671863.
Haque, M. A., and M. T. A. Saif. 2003. “Strain gradient effect in nanoscale thin films.” Acta Mater. 51 (11): 3053–3061. https://doi.org/10.1016/S1359-6454(03)00116-2.
Hayashi, I., M. Sato, and M. Kuroda. 2011. “Strain hardening in bent copper foils.” J. Mech. Phys. Solids 59 (9): 1731–1751. https://doi.org/10.1016/j.jmps.2011.06.001.
Hong, Y., X. D. He, and R. G. Wang. 2012. “Vibration and damping analysis of a composite blade.” Mater. Des. 34 (Feb): 98–105. https://doi.org/10.1016/j.matdes.2011.07.033.
Hosseini, M., M. Bahreman, and A. Jamalpoor. 2016. “Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system.” Acta Mech. 227 (Jun): 1621–1643. https://doi.org/10.1007/S00707-016-1570-0.
Hutchinson, J. W. 2000. “Plasticity at the micron scale.” Int. J. Solids Struct. 37 (1–2): 225–238. https://doi.org/10.1016/S0020-7683(99)00090-6.
Jha, D. K., T. Kant, and R. K. Singh. 2013. “A critical review of recent research on functionally graded plates.” Compos. Struct. 96 (Feb): 833–849. https://doi.org/10.1016/j.compstruct.2012.09.001.
Jia, X. L., J. Yang, S. Kitipornchai, and C. W. Lim. 2012. “Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation.” J. Sound Vib. 331 (14): 3397–3411. https://doi.org/10.1016/j.jsv.2012.02.026.
Karamanli, A., M. Aydogdu, and T. P. Vo. 2021. “A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model.” Aerosp. Sci. Technol. 111 (Apr): 106550. https://doi.org/10.1016/j.ast.2021.106550.
Karamanli, A., and T. P. Vo. 2020. “Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory.” Compos. Struct. 246 (Aug): 112401. https://doi.org/10.1016/j.compstruct.2020.112401.
Karamanli, A., and T. P. Vo. 2021. “A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory.” Compos. Struct. 257 (Feb): 113066. https://doi.org/10.1016/j.compstruct.2020.113066.
Karimipour, I., Y. T. Beni, and A. H. Akbarzadeh. 2019. “Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates.” Commun. Nonlinear Sci. Numer. Simul. 78 (Nov): 104856. https://doi.org/10.1016/j.cnsns.2019.104856.
Ke, L.-L., Y.-S. Wang, J. Yang, and S. Kitipornchai. 2012a. “Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory.” J. Sound Vib. 331 (1): 94–106. https://doi.org/10.1016/j.jsv.2011.08.020.
Ke, L.-L., Y.-S. Wang, J. Yang, and S. Kitipornchai. 2012b. “Nonlinear free vibration of size-dependent functionally graded microbeams.” Int. J. Eng. Sci. 50 (1): 256–267. https://doi.org/10.1016/j.ijengsci.2010.12.008.
Khaniki, H. B., M. H. Ghayesh, and M. Amabili. 2021. “A review on the statics and dynamics of electrically actuated nano and micro structures.” Int. J. Non-Linear Mech. 129 (Mar): 103658. https://doi.org/10.1016/j.ijnonlinmec.2020.103658.
Kiral, Z. 2009. “Damped response of symmetric laminated composite beams to moving load with different boundary conditions.” J. Reinf. Plast. Compos. 28 (20): 2511–2526. https://doi.org/10.1177/0731684408092401.
Kumar, R., V. Singh, T. Dey, D. Bhunia, S. N. Patel, and V. Jain. 2022. “Nonlinear analysis of sandwich plate with FG porous core and RD-CNTCFRC face sheets under transverse patch loading.” Acta Mech. 233 (11): 4589–4614. https://doi.org/10.1007/s00707-022-03323-2.
Kumar, V., S. J. Singh, V. H. Saran, and S. P. Harsha. 2021. “Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation.” Eur. J. Mech. A. Solids 85 (Jan): 104124. https://doi.org/10.1016/j.euromechsol.2020.104124.
Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. “Experiments and theory in strain gradient elasticity.” J. Mech. Phys. Solids 51 (8): 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
Lau, S. L., and Y. K. Cheung. 1981. “Amplitude incremental variational principle for nonlinear vibration of elastic systems.” J. Appl. Mech. 48 (4): 959–964. https://doi.org/10.1115/1.3157762.
Lee, B. H. K., L. Gong, and Y. S. Wong. 1997. “Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity.” J. Fluids Struct. 11 (3): 225–246. https://doi.org/10.1006/jfls.1996.0075.
Lee, Z., C. Ophus, L. M. Fischer, N. Nelson-Fitzpatrick, K. L. Westra, S. Evoy, V. Radmilovic, U. Dahmen, and D. Mitlin. 2006. “Metallic NEMS components fabricated from nanocomposite Al–Mo films.” Nanotechnology 17 (12): 3063. https://doi.org/10.1088/0957-4484/17/12/042.
Li, C., S. K. Lai, and X. Yang. 2019. “On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter.” Appl. Math. Modell. 69 (May): 127–141. https://doi.org/10.1016/j.apm.2018.12.010.
Li, M., R. Yan, and C. G. Soares. 2021. “Free vibration of advanced composite plates using a new higher order shear deformation theory.” Eur. J. Mech. A. Solids 88 (Jul): 104236. https://doi.org/10.1016/j.euromechsol.2021.104236.
Linnemann, R., T. Gotszalk, I. W. Rangelow, P. Dumania, and E. Oesterschulze. 1996. “Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers.” J. Vac. Sci. Technol., B 14 (2): 856–860. https://doi.org/10.1116/1.589161.
Liu, C., L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai. 2014. “Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings.” Int. J. Struct. Stab. Dyn. 14 (3): 1350067. https://doi.org/10.1142/S0219455413500673.
Liu, D., Y. He, D. J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding. 2013. “Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment.” Int. J. Plast. 41 (Feb): 30–52. https://doi.org/10.1016/j.ijplas.2012.08.007.
Liu, H. R., J. Z. Li, D. X. Hou, R. R. Yin, and J. S. Jiang. 2015. “Analysis of dynamical characteristic of piecewise-nonlinear asymmetric hysteretic system based on incremental harmonic balance method.” Discrete Dyn. Nat. Soc. 2015 (Oct): 296085. https://doi.org/10.1155/2015/296085.
Liu, Y., Z. Qin, and F. Chu. 2021. “Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads.” Int. J. Mech. Sci. 201 (Jul): 106474. https://doi.org/10.1016/j.ijmecsci.2021.106474.
Loghman, E., F. Bakhtiari-Nejad, A. Kamali, M. Abbaszadeh, and M. Amabili. 2021. “Nonlinear vibration of fractional viscoelastic micro-beams.” Int. J. Non-Linear Mech. 137 (Dec): 103811. https://doi.org/10.1016/j.ijnonlinmec.2021.103811.
Mahmud, A. S., Y. Liu, and T. H. Nam. 2008. “Gradient anneal of functionally graded NiTi.” Smart Mater. Struct. 17 (1): 015031. https://doi.org/10.1088/0964-1726/17/01/015031.
Maksimov, V., E. Barchiesi, A. Misra, L. Placidi, and D. Timofeev. 2021. “Two-dimensional analysis of size effects in strain-gradient granular solids with damage-induced anisotropy evolution.” J. Eng. Mech. 147 (11): 04021098. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002010.
Mirjavadi, S. S., B. M. Afshari, M. R. Barati, and A. M. S. Hamouda. 2019. “Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection.” Microsyst. Technol. 25 (Aug): 3137–3150. https://doi.org/10.1007/s00542-018-4277-4.
Mirsalehi, M., M. Azhari, and H. Amoushahi. 2015. “Stability of thin FGM microplate subjected to mechanical and thermal loading based on the modified couple stress theory and spline finite strip method.” Aerosp. Sci. Technol. 47 (Dec): 356–366. https://doi.org/10.1016/j.ast.2015.10.001.
Mirsalehi, M., M. Azhari, and H. Amoushahi. 2017. “Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method.” Eur. J. Mech. A. Solids 61 (Jan): 1–13. https://doi.org/10.1016/j.euromechsol.2016.08.008.
Nateghi, A., and M. Salamat-Talab. 2013. “Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory.” Compos. Struct. 96 (Feb): 97–110. https://doi.org/10.1016/j.compstruct.2012.08.048.
Nguyen, H. X., E. Atroshchenko, T. Ngo, H. Nguyen-Xuan, and T. P. Vo. 2019. “Vibration of cracked functionally graded microplates by the strain gradient theory and extended isogeometric analysis.” Eng. Struct. 187 (May): 251–266. https://doi.org/10.1016/j.engstruct.2019.02.032.
Peeters, E., S. Vergote, B. Puers, and W. Sansen. 1992. “A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response.” J. Micromech. Microeng. 2 (2): 104. https://doi.org/10.1088/0960-1317/2/2/006.
Rajput, M., and A. Gupta. 2023. “Strain gradient–based thermomechanical nonlinear stability behavior of geometrically imperfect porous functionally graded nanoplates.” J. Eng. Mech. 149 (7): 04023040. https://doi.org/10.1061/JENMDT.EMENG-6910.
Reddy, J. 2006. Theory and analysis of elastic plates and shells. Boca Raton, FL: CRC Press.
Reddy, J. N. 2017. Energy principles and variational methods in applied mechanics. New York: Wiley.
Reddy, J. N., and J. Kim. 2012. “A nonlinear modified couple stress-based third-order theory of functionally graded plates.” Compos. Struct. 94 (3): 1128–1143. https://doi.org/10.1016/j.compstruct.2011.10.006.
Reddy, J. N., and C. Liu. 1985. “A higher-order shear deformation theory of laminated elastic shells.” Int. J. Eng. Sci. 23 (3): 319–330. https://doi.org/10.1016/0020-7225(85)90051-5.
Rezaei, A. S., and A. R. Saidi. 2015. “Exact solution for free vibration of thick rectangular plates made of porous materials.” Compos. Struct. 134 (Dec): 1051–1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
Roudbari, M. A., T. D. Jorshari, C. Lü, R. Ansari, A. Z. Kouzani, and M. Amabili. 2022. “A review of size-dependent continuum mechanics models for micro- and nano-structures.” Thin-Walled Struct. 170 (Jan): 108562. https://doi.org/10.1016/j.tws.2021.108562.
Roylance, L. M., and J. B. Angell. 1979. “A batch-fabricated silicon accelerometer.” IEEE Trans. Electron Devices 26 (12): 1911–1917. https://doi.org/10.1109/T-ED.1979.19795.
Rudd, R. E., and J. Q. Broughton. 1998. “Coarse-grained molecular dynamics and the atomic limit of finite elements.” Phys. Rev. B 58 (10): R5893. https://doi.org/10.1103/PhysRevB.58.R5893.
Saghir, S., and M. I. Younis. 2018. “An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation.” Acta Mech. 229 (Jul): 2909–2922. https://doi.org/10.1007/S00707-018-2141-3.
Sahmani, S., and R. Ansari. 2013. “On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory.” Compos. Struct. 95 (Jan): 430–442. https://doi.org/10.1016/j.compstruct.2012.07.025.
Seidel, H., H. Riedel, R. Kolbeck, G. Mück, W. Kupke, and M. Königer. 1990. “Capacitive silicon accelerometer with highly symmetrical design.” Sens. Actuators, A 21 (1–3): 312–315. https://doi.org/10.1016/0924-4247(90)85062-9.
Shenas, A. G., and P. Malekzadeh. 2016. “Free vibration of functionally graded quadrilateral microplates in thermal environment.” Thin-Walled Struct. 106 (Sep): 294–315. https://doi.org/10.1016/j.tws.2016.05.001.
Shenas, A. G., S. Ziaee, and P. Malekzadeh. 2022. “Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment.” Thin-Walled Struct. 170 (Jan): 108614. https://doi.org/10.1016/j.tws.2021.108614.
Sheng, G. G., and X. Wang. 2019. “Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects.” Appl. Math. Modell. 71 (Jul): 421–437. https://doi.org/10.1016/j.apm.2019.02.027.
Şimşek, M. 2014. “Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method.” Compos. Struct. 112 (Jun): 264–272. https://doi.org/10.1016/j.compstruct.2014.02.010.
Şimşek, M., M. Aydın, H. H. Yurtcu, and J. N. Reddy. 2015. “Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory.” Acta Mech. 226 (11): 3807–3822. https://doi.org/10.1007/S00707-015-1437-9.
Singh, V., R. Kumar, and S. N. Patel. 2021. “Non-linear vibration and instability of multi-phase composite plate subjected to non-uniform in-plane parametric excitation: Semi-analytical investigation.” Thin-Walled Struct. 162 (May): 107556. https://doi.org/10.1016/j.tws.2021.107556.
Soldatos, K. P. 1991. “A refined laminated plate and shell theory with applications.” J. Sound Vib. 144 (1): 109–129. https://doi.org/10.1016/0022-460X(91)90736-4.
Song, J., and Y. Wei. 2020. “A method to determine material length scale parameters in elastic strain gradient theory.” J. Appl. Mech. 87 (3): 031010. https://doi.org/10.1115/1.4045523.
Song, M., Y. Gong, J. Yang, W. Zhu, and S. Kitipornchai. 2020. “Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments.” J. Sound Vib. 468 (Mar): 115115. https://doi.org/10.1016/j.jsv.2019.115115.
Stölken, J. S., and A. G. Evans. 1998. “A microbend test method for measuring the plasticity length scale.” Acta Mater. 46 (14): 5109–5115. https://doi.org/10.1016/S1359-6454(98)00153-0.
Subbaraj, K., and M. Dokainish. 1989. “A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods.” Comput. Struct. 32 (6): 1387–1401. https://doi.org/10.1016/0045-7949(89)90315-5.
Swaminathan, K., D. T. Naveenkumar, A. M. Zenkour, and E. Carrera. 2015. “Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review.” Compos. Struct. 120 (Feb): 10–31. https://doi.org/10.1016/j.compstruct.2014.09.070.
Thai, C. H., A. J. M. Ferreira, and P. Phung-Van. 2019. “Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory.” Composites, Part B 169 (Jul): 174–188. https://doi.org/10.1016/j.compositesb.2019.02.048.
Thai, C. H., A. J. M. Ferreira, and P. Phung-Van. 2020. “Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory.” Eng. Anal. Boundary Elem. 117 (Aug): 284–298. https://doi.org/10.1016/j.enganabound.2020.05.003.
Thai, C. H., A. J. M. Ferreira, T. Rabczuk, and H. Nguyen-Xuan. 2018. “Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory.” Eur. J. Mech. A. Solids 72 (Nov): 521–538. https://doi.org/10.1016/j.euromechsol.2018.07.012.
Thai, S., H.-T. Thai, T. P. Vo, and H. Nguyen-Xuan. 2017a. “Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory.” Eng. Struct. 153 (Dec): 598–612. https://doi.org/10.1016/j.engstruct.2017.10.002.
Thai, S., H.-T. Thai, T. P. Vo, and V. I. Patel. 2017b. “Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis.” Comput. Struct. 190 (Oct): 219–241. https://doi.org/10.1016/j.compstruc.2017.05.014.
Thorby, D. 2008. Structural dynamics and vibration in practice: An engineering handbook. Amsterdam, Netherlands: Butterworth-Heinemann.
Timoshin, A., A. Kazemi, M. H. Beni, J. E. Jam, and B. Pham. 2021. “Nonlinear strain gradient forced vibration analysis of shear deformable microplates via hermitian finite elements.” Thin-Walled Struct. 161 (Apr): 107515. https://doi.org/10.1016/j.tws.2021.107515.
Torabi, J., and J. Niiranen. 2021. “Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation.” Eng. Struct. 236 (Jun): 112117. https://doi.org/10.1016/j.engstruct.2021.112117.
Torabi, J., and J. Niiranen. 2023. “Nonlinear finite element free and forced vibrations of cellular plates having lattice-type metamaterial cores: A strain gradient plate model approach.” Mech. Syst. Signal Process. 192 (Jun): 110224. https://doi.org/10.1016/j.ymssp.2023.110224.
Torabi, J., J. Niiranen, and R. Ansari. 2021. “Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory.” Eur. J. Mech. A. Solids 87 (May): 104221. https://doi.org/10.1016/j.euromechsol.2021.104221.
Torabi, J., J. Niiranen, and R. Ansari. 2022. “Multi-patch variational differential quadrature method for shear-deformable strain gradient plates.” Int. J. Numer. Methods Eng. 123 (10): 2309–2337. https://doi.org/10.1002/nme.6939.
Tortonese, M. 1997. “Cantilevers and tips for atomic force microscopy.” IEEE Eng. Med. Biol. Mag. 16 (2): 28–33. https://doi.org/10.1109/51.582173.
Tran, L. V., and J. Niiranen. 2020. “A geometrically nonlinear Euler–Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications.” Math. Mech. Complex Syst. 8 (4): 345–371. https://doi.org/10.2140/memocs.2020.8.345.
Tsiatas, G. C., and A. J. Yiotis. 2015. “Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: Comparison with the nonlocal elasticity theory.” Acta Mech. 226 (4): 1267–1281. https://doi.org/10.1007/s00707-014-1249-3.
Voyiadjis, G. Z., and A. H. Almasri. 2009. “Variable material length scale associated with nanoindentation experiments.” J. Eng. Mech. 135 (3): 139–148. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(139).
Wang, B., S. Zhou, J. Zhao, and X. Chen. 2011. “A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory.” Eur. J. Mech. A. Solids 30 (4): 517–524. https://doi.org/10.1016/j.euromechsol.2011.04.001.
Wang, Y.-G., W.-H. Lin, and N. Liu. 2013. “Nonlinear free vibration of a microscale beam based on modified couple stress theory.” Physica E 47 (Jan): 80–85. https://doi.org/10.1016/j.physe.2012.10.020.
Wang, Y.-G., W.-H. Lin, and N. Liu. 2015a. “Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory.” Appl. Math. Modell. 39 (1): 117–127. https://doi.org/10.1016/j.apm.2014.05.007.
Wang, Y.-G., W.-H. Lin, C.-L. Zhou, and R.-X. Liu. 2015b. “Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory.” J. Mech. 31 (1): 37–46. https://doi.org/10.1017/jmech.2014.47.
Warburton, G. B. 1954. “The vibration of rectangular plates.” Proc. Inst. Mech. Eng. 168 (1): 371–384. https://doi.org/10.1243/PIME_PROC_1954_168_040_02.
Witvrouw, A., and A. Mehta. 2005. “The use of functionally graded poly-SiGe layers for MEMS applications.” Mater. Sci. Forum 492–493 (Aug): 255–260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255.
Xu, L. L., C. C. Kang, Y. F. Zheng, and C. P. Chen. 2021. “Analysis of nonlinear vibration of magneto-electro-elastic plate on elastic foundation based on high-order shear deformation.” Compos. Struct. 271 (Sep): 114149. https://doi.org/10.1016/j.compstruct.2021.114149.
Yadav, A., M. Amabili, S. K. Panda, T. Dey, and R. Kumar. 2021. “Forced nonlinear vibrations of circular cylindrical sandwich shells with cellular core using higher-order shear and thickness deformation theory.” J. Sound Vib. 510 (Oct): 116283. https://doi.org/10.1016/j.jsv.2021.116283.
Yang, F. A. C. M., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. “Couple stress based strain gradient theory for elasticity.” Int. J. Solids Struct. 39 (10): 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
Yang, Q., and C. W. Lim. 2012. “Thermal effects on buckling of shear deformable nanocolumns with von Kármán nonlinearity based on nonlocal stress theory.” Nonlinear Anal. Real World Appl. 13 (2): 905–922. https://doi.org/10.1016/j.nonrwa.2011.08.026.
Yazdi, N., F. Ayazi, and K. Najafi. 1998. “Micromachined inertial sensors.” Proc. IEEE 86 (8): 1640–1659. https://doi.org/10.1109/5.704269.
Yu, Y. M., and C. W. Lim. 2013. “Nonlinear constitutive model for axisymmetric bending of annular graphene-like nanoplate with gradient elasticity enhancement effects.” J. Eng. Mech. 139 (8): 1025–1035. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000625.
Zhang, B., Y. He, D. Liu, J. Lei, L. Shen, and L. Wang. 2015. “A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates.” Composites, Part B 79 (Sep): 553–580. https://doi.org/10.1016/j.compositesb.2015.05.017.
Zhang, B., H. Li, L. Kong, H. Shen, and X. Zhang. 2020. “Size-dependent static and dynamic analysis of Reddy-type micro-beams by strain gradient differential quadrature finite element method.” Thin-Walled Struct. 148 (Mar): 106496. https://doi.org/10.1016/j.tws.2019.106496.
Zhang, Y. Y., C. M. Wang, and N. Challamel. 2010. “Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model.” J. Eng. Mech. 136 (5): 562–574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 149Issue 10October 2023

History

Received: Feb 28, 2023
Accepted: Jun 23, 2023
Published online: Aug 10, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 10, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Varun Jain, Aff.M.ASCE
Research Scholar, Dept. of Civil Engineering, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India.
Rajesh Kumar [email protected]
Assistant Professor, Dept. of Civil Engineering, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India (corresponding author). Email: [email protected]
Gaurav Watts
Assistant Professor, Dept. of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India.
Assistant Professor, Dept. of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India. ORCID: https://orcid.org/0000-0002-8061-0620
Vishal Singh
Research Scholar, Dept. of Civil Engineering, Birla Institute of Technology and Science Pilani, Rajasthan 333031, India; Assistant Professor, Dept. of Civil Engineering, Malla Reddy Engineering College and Management Sciences, Hyderabad, Telangana 500014, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share