Technical Papers
Aug 23, 2023

Scaling Effect for Tensile Properties of Cementitious Materials Based on Self-Similarity: From Nano to Macro

Publication: Journal of Engineering Mechanics
Volume 149, Issue 11

Abstract

Cementitious materials contain multiple phases, from the nanoscale to the macroscale. Although different mechanical properties are observed at each scale length, similarities can still be found in their spatial structural features and in the geometry of the stress–strain curves over various scales. This study aims to provide a quantitative description of the scaling effect based on the concept of self-similarity. Multiscale models are proposed for the tensile strength, peak strain, and elastic modulus of cementitious materials. The results obtained from these models exhibit a change of five orders of magnitude in tensile strength as the scale length increases from 109  m to 100  m, whereas a slight decrease in the elastic modulus is observed. Combined with the models above and the Morse function, a continuous constitutive model is proposed to describe the tensile stress–strain behavior at each scale length. This paper studied the scale effect of cementitious materials from the viewpoint of self-similarity and investigated this phenomenon over a very broad length range, including the nano-, micro-, meso-, and macro-scale. The tensile stress–strain relationship was unified and characterized across scales, which not only reflected the atomic interaction on the nanoscale via the Morse potential energy function, but also depicted the macroscopic tensile tests results. These findings provide new insights in revealing the mechanism of quasi-brittle materials’ size effect.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52079047, 51479048, 51178162, 50979032, and 90510017); the National Key Research and Development Program of China (Grant No. 2017YFC0404902); the Fundamental Research Funds for the Central Universities (Grant No. B200203082); and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX20_0437).

References

Abuhaikal, M. M. A. R. 2011. “Nano-chemomechanical assessment of rice husk ash cement by wavelength dispersive spectroscopy and nanoindentation.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology.
Allen, A. J., J. J. Thomas, and H. M. Jennings. 2007. “Composition and density of nanoscale calcium–silicate–hydrate in cement.” Nat. Mater. 6 (4): 311–316. https://doi.org/10.1038/nmat1871.
Al-Ostaz, A., W. Wu, A. H. D. Cheng, and C. R. Song. 2010. “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement.” Composites, Part B 41 (7): 543–549. https://doi.org/10.1016/j.compositesb.2010.06.005.
Al Wakeel, S., J. Němeček, L. Li, Y. Xi, and M. Hubler. 2019. “The effect of introducing nanoparticles on the fracture toughness of well cement paste.” Int. J. Greenhouse Gas Control 84 (Aug): 147–153. https://doi.org/10.1016/j.ijggc.2019.03.009.
Bažant, Z. P. 2004. “Scaling theory for quasibrittle structural failure.” Proc. Natl. Acad. Sci. USA 101 (37): 13400–13407. https://doi.org/10.1073/pnas.0404096101.
Bažant, Z. P., and S.-D. Pang. 2007. “Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture.” J. Mech. Phys. Solids 55 (1): 91–131. https://doi.org/10.1016/j.jmps.2006.05.007.
Bažant, Z. P., and Y. Xi. 1991. “Statistical size effect in quasi-brittle structures: II. Nonlocal theory.” J. Eng. Mech. 117 (11): 2623–2640. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2623).
Blake, W. 1950. “Auguries of innocence.” Poetry Foundation. Accessed February 28, 2023. https://www.poetryfoundation.org/poems/43650/auguries-of-innocence.
Carpinteri, A., B. Chiaia, and G. Ferro. 1995. “Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder.” Mater. Struct. 28 (6): 311–317. https://doi.org/10.1007/BF02473145.
Carpinteri, A., B. Chiaia, and K. M. Nemati. 1997. “Complex fracture energy dissipation in concrete under different loading conditions.” Mech. Mater. 26 (2): 93–108. https://doi.org/10.1016/S0167-6636(97)00022-7.
Carreira, D. J., and K. H. Chu. 1986. “Stress-strain relationship for reinforced concrete in tension.” ACI J. Proc. 83 (1): 21–28.
Chantikul, P., S. J. Bennison, and B. R. Lawn. 1990. “Role of grain size in the strength and R-curve properties of alumina.” J. Am. Ceram. Soc. 73 (8): 2419–2427. https://doi.org/10.1111/j.1151-2916.1990.tb07607.x.
Chen, J. J., L. Sorelli, M. Vandamme, F. J. Ulm, and G. Chanvillard. 2010. “A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for CSH/Ca(OH)2 nanocomposites.” J. Am. Ceram. Soc. 93 (5): 1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x.
Chen, X., and J. Bu. 2016. “Experimental study on direct tensile behavior of concrete under various loading regimes.” ACI Mater. J. 113 (4): 513. https://doi.org/10.14359/51688932.
Chen, X., D. Hou, Y. Han, X. Ding, and P. Hua. 2021. “Clustering analysis of grid nanoindentation data for cementitious materials.” J. Mater. Sci. 56 (21): 12238–12255. https://doi.org/10.1007/s10853-021-05848-8.
Constantinides, G., and F. J. Ulm. 2007. “The nanogranular nature of C─ S─ H.” J. Mech. Phys. Solids 55 (1): 64–90. https://doi.org/10.1016/j.jmps.2006.06.003.
Cygan, R. T., J.-J. Liang, and A. G. Kalinichev. 2004. “Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field.” J. Phys. Chem. B 108 (4): 1255–1266. https://doi.org/10.1021/jp0363287.
Dandekar, C. R., and Y. C. Shin. 2011. “Effect of porosity on the interface behavior of an Al2O3-aluminum composite: A molecular dynamics study.” Compos. Sci. Technol. 71 (3): 350–356. https://doi.org/10.1016/j.compscitech.2010.11.029.
DeJong, M. J., and F.-J. Ulm. 2007. “The nanogranular behavior of CSH at elevated temperatures (up to 700C).” Cem. Concr. Res. 37 (1): 1–12. https://doi.org/10.1016/j.cemconres.2006.09.006.
Evans, R. H., and M. S. Marathe. 1968. “Microcracking and stress-strain curves for concrete in tension.” Matér. Constr. 1 (1): 61–64. https://doi.org/10.1007/BF02479001.
Fan, D., and S. Yang. 2018. “Mechanical properties of C─ S─ H globules and interfaces by molecular dynamics simulation.” Constr. Build. Mater. 176 (Jul): 573–582. https://doi.org/10.1016/j.conbuildmat.2018.05.085.
Fu, J., S. Kamali-Bernard, F. Bernard, and M. Cornen. 2018. “Comparison of mechanical properties of C─ S─ H and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques.” Composites, Part B 151 (May): 127–138. https://doi.org/10.1016/j.compositesb.2018.05.043.
Galilei, G. 1638. Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica ed i movimenti locali. Leiden, Netherlands: Elsevirii.
Gan, Y., C. R. Rodriguez, E. Schlangen, K. van Breugel, and B. Šavija. 2021. “Assessing strain rate sensitivity of cement paste at the micro-scale through micro-cantilever testing.” Cem. Concr. Compos. 121 (April): 104084. https://doi.org/10.1016/j.cemconcomp.2021.104084.
Gao, X., L. Zhou, X. Ren, and J. Li. 2021. “Rate effect on the stress–strain behavior of concrete under uniaxial tensile stress.” Supplement, Struct. Concr. 22 (S1): E815–E830. https://doi.org/10.1002/suco.201900567.
Girifalco, L. A., and V. G. Weizer. 1959. “Application of the Morse potential function to cubic metals.” Phys. Rev. 114 (3): 687. https://doi.org/10.1103/PhysRev.114.687.
Goyal, A., I. Palaia, K. Ioannidou, F. J. Ulm, H. van Damme, R. J. M. Pellenq, E. Trizac, and E. Del Gado. 2021. “The physics of cement cohesion.” Sci. Adv. 7 (32): 1–12.
Griffith, A. 1924. “The theory of rupture.” In Proc., First Congress of Applied Mechanics, 55–63. Lombardy, Italy: International Congress of Applied Mechanics.
Hajilar, S., and B. Shafei. 2016. “Assessment of structural, thermal, and mechanical properties of Portlandite through molecular dynamics simulations.” J. Solid State Chem. 244 (Sep): 164–174. https://doi.org/10.1016/j.jssc.2016.09.026.
Hordijk, D. A. 1991. Local approach to fatigue of concrete. Delft, Netherlands: Delft Univ. of Technology.
Hou, D., J. Zhang, Z. Li, and Y. Zhu. 2015. “Uniaxial tension study of calcium silicate hydrate (C–S–H): Structure, dynamics and mechanical properties.” Mater. Struct./Mater. Constr. 48 (11): 3811–3824. https://doi.org/10.1617/s11527-014-0441-1.
Hou, D., Y. Zhu, Y. Lu, and Z. Li. 2014. “Mechanical properties of calcium silicate hydrate (C─ S─ H) at nano-scale: A molecular dynamics study.” Mater. Chem. Phys. 146 (3): 503–511. https://doi.org/10.1016/j.matchemphys.2014.04.001.
Howind, T., J. J. Hughes, W. Zhu, F. Puertas, S. Goñi Elizalde, M. S. Hernandez, A. Guerrero Bustos, M. Palacios, and J. S. Dolado. 2011. “Mapping of mechanical properties of cement paste microstructures.” In Proc., 13th Int. Congress on the Chemistry of Cement. Madrid, Spain: Caminos.
Hu, C., Y. Gao, Y. Zhang, and Z. Li. 2016. “Statistical nanoindentation technique in application to hardened cement pastes: Influences of material microstructure and analysis method.” Constr. Build. Mater. 113 (Jun): 306–316. https://doi.org/10.1016/j.conbuildmat.2016.03.064.
Hu, X., Q. Li, Z. Wu, and S. Yang. 2022. “Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics.” Eng. Fract. Mech. 259 (Oct): 108158. https://doi.org/10.1016/j.engfracmech.2021.108158.
Jennings, H. M., J. J. Thomas, J. S. Gevrenov, G. Constantinides, and F. J. Ulm. 2007. “A multi-technique investigation of the nanoporosity of cement paste.” Cem. Concr. Res. 37 (3): 329–336.
Jin, S., X. Zhao, Y. Tai, and J. Zhou. 2022. “Multiscale model for the scale effect of tensile strength of hardened cement paste based on pore size distribution.” Constr. Build. Mater. 325 (Feb): 126775. https://doi.org/10.1016/j.conbuildmat.2022.126775.
Lawn, B. R., S. W. Freiman, T. L. Baker, D. D. Cobb, and A. C. Gonzalez. 1984. “Study of microstructural effects in the strength of alumina using controlled flaws.” J. Am. Ceram. Soc. 67 (4): c67–c69. https://doi.org/10.1111/j.1151-2916.1984.tb18831.x.
Li, L., B. Wang, and M. H. Hubler. 2022. “Carbon nanofibers (CNFs) dispersed in ultra-high performance concrete (UHPC): Mechanical property, workability and permeability investigation.” Cem. Concr. Compos. 131 (Nov): 104592. https://doi.org/10.1016/j.cemconcomp.2022.104592.
Li, Q., Z. Deng, and H. Fu. 2004. “Effect of aggregate type on mechanical behavior of dam concrete.” ACI Mater. J. 101 (6): 483–492. https://doi.org/10.14359/13487.
Mehta, P. K., and P. J. M. Monteiro. 2014. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill Education.
Mishra, R. K., et al. 2017. “A force field database for cementitious materials including validations, applications and opportunities.” Cem. Concr. Res. 102 (Sep): 68–89. https://doi.org/10.1016/j.cemconres.2017.09.003.
Miyahara, N., K. Yamaishi, Y. Mutoh, K. Uematsu, and M. Inoue. 1994. “Effect of grain size on strength and fracture toughness in alumina.” JSME Int., J. 37 (3): 231–237. https://doi.org/10.1299/jsmea1993.37.3_231.
Němeček, J., V. Králík, V. Šmilauer, L. Polívka, and A. Jäger. 2016. “Tensile strength of hydrated cement paste phases assessed by micro-bending tests and nanoindentation.” Cem. Concr. Compos. 73 (Oct): 164–173. https://doi.org/10.1016/j.cemconcomp.2016.07.010.
Němeček, J., J. Maňák, J. Němeček, and T. Krejčí. 2019. “Effect of vacuum and Focused Ion Beam generated heat on fracture properties of hydrated cement paste.” Cem. Concr. Compos. 100 (Oct): 139–149. https://doi.org/10.1016/j.cemconcomp.2019.03.027.
Oliver, W. C., and G. M. Pharr. 1992. “An improved technique for determining hardness and elastic modulus using load and displacement.” J. Mater. Res. 7 (6): 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
Ren, X., W. Yang, Y. Zhou, and J. Li. 2008. “Behavior of high-performance concrete under uniaxial and biaxial loading.” ACI Mater. J. 105 (6): 548–557.
Senftle, T. P., et al. 2016. “The ReaxFF reactive force-field: Development, applications and future directions.” npj Comput. Mater. 2 (1): 1–4. https://doi.org/10.1038/npjcompumats.2015.11.
Serino, G., A. Comba, A. Baldi, M. Carossa, P. Baldissara, C. Bignardi, A. Audenino, C. G. R. Torres, and N. Scotti. 2022. “Could light-curing time, post-space region and cyclic fatigue affect the nanomechanical behavior of a dual-curing cement for fiber post luting?” J. Mech. Behav. Biomed. Mater. 125 (Oct): 104886. https://doi.org/10.1016/j.jmbbm.2021.104886.
Shahrin, R., and C. P. Bobko. 2019. “Micropillar compression investigation of size effect on microscale strength and failure mechanism of Calcium-Silicate-Hydrates (C─ S─ H) in cement paste.” Cem. Concr. Res. 125 (Sep): 105863. https://doi.org/10.1016/j.cemconres.2019.105863.
Shahsavari, R., R. J. M. Pellenq, and F.-J. Ulm. 2011. “Empirical force fields for complex hydrated calcio-silicate layered materials.” Phys. Chem. Chem. Phys. 13 (3): 1002–1011. https://doi.org/10.1039/C0CP00516A.
Streitz, F. H., and J. W. Mintmire. 1996. “Molecular dynamics simulations of elastic response and tensile failure of alumina.” Langmuir 12 (19): 4605–4609. https://doi.org/10.1021/la950906w.
Ulm, F., M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz. 2007. “Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale.” J. Am. Ceram. Soc. 90 (9): 2677–2692. https://doi.org/10.1111/j.1551-2916.2007.02012.x.
Ulm, F.-J., M. Vandamme, H. M. Jennings, J. Vanzo, M. Bentivegna, K. J. Krakowiak, G. Constantinides, C. P. Bobko, and K. J. Van Vliet. 2010. “Does microstructure matter for statistical nanoindentation techniques?” Cem. Concr. Compos. 32 (1): 92–99. https://doi.org/10.1016/j.cemconcomp.2009.08.007.
Vandamme, M., and F.-J. Ulm. 2013. “Nanoindentation investigation of creep properties of calcium silicate hydrates.” Cem. Concr. Res. 52 (Oct): 38–52. https://doi.org/10.1016/j.cemconres.2013.05.006.
van Duin, A. C. T., S. Dasgupta, F. Lorant, and W. A. Goddard. 2001. “ReaxFF:  A reactive force field for hydrocarbons.” J. Phys. Chem. A 105 (41): 9396–9409. https://doi.org/10.1021/jp004368u.
Wachtman, J. B., W. R. Cannon, and M. J. Matthewson. 2009. Mechanical properties of ceramics. New York: Wiley.
Wang, H., C. Li, J. Tu, and D. Li. 2017. “Dynamic tensile test of mass concrete with Shapai Dam cores.” Mater. Struct. 50 (1): 44. https://doi.org/10.1617/s11527-016-0901-x.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1115/1.4010337.
Wieninger, H., K. Kromp, and R. F. Pabst. 1986. “Crack resistance curves of alumina and zirconia at room temperature.” J. Mater. Sci. 21 (2): 411–418. https://doi.org/10.1007/BF01145502.
Wu, S., Y. Wang, D. Shen, and J. Zhou. 2012. “Experimental study on dynamic axial tensile mechanical properties of concrete and its components.” ACI Mater. J. 109 (5): 517–528. https://doi.org/10.14359/51684083.
Yang, J., Q. Ding, G. Zhang, D. Hou, M. Zhao, and J. Cao. 2022. “Effect of sulfate attack on the composition and micro-mechanical properties of C-A-S-H gel in cement-slag paste: A combined study of nanoindentation and SEM-EDS.” Constr. Build. Mater. 345(Jul): 128275. https://doi.org/10.1016/j.conbuildmat.2022.128275.
Zamani, S. M. M., V. Iacobellis, and K. Behdinan. 2015. “Multiscale modeling of the effect of nanoscale defects on Al2O3 mechanical behavior.” In Proc., ASME Int. Mechanical Engineering Congress and Exposition, 1–6. New York: ASME.
Zhang, H., B. Šavija, and E. Schlangen. 2018a. “Towards understanding stochastic fracture performance of cement paste at micro length scale based on numerical simulation.” Constr. Build. Mater. 183 (Sep): 189–201. https://doi.org/10.1016/j.conbuildmat.2018.06.167.
Zhang, H., B. Šavija, Y. Xu, and E. Schlangen. 2018b. “Size effect on splitting strength of hardened cement paste: Experimental and numerical study.” Cem. Concr. Compos. 94 (Nov): 264–276. https://doi.org/10.1016/j.cemconcomp.2018.09.018.
Zhang, H., Y. Xu, Y. Gan, E. Schlangen, and B. Šavija. 2020. “Experimentally validated meso-scale fracture modelling of mortar using output from micromechanical models.” Cem. Concr. Compos. 110 (Jul): 103567. https://doi.org/10.1016/j.cemconcomp.2020.103567.
Zhang, H. W., G. Subhash, X. N. Jing, L. J. Kecskes, and R. J. Dowding. 2006. “Evaluation of hardness–yield strength relationships for bulk metallic glasses.” Philos. Mag. Lett. 86 (5): 333–345. https://doi.org/10.1080/09500830600788935.
Zhang, N., and R. Shahsavari. 2016. “Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis.” J. Mech. Phys. Solids 96 (Nov): 204–222. https://doi.org/10.1016/j.jmps.2016.07.021.
Zhang, P., S. X. Li, and Z. F. Zhang. 2011. “General relationship between strength and hardness.” Mater. Sci. Eng., A 529 (1): 62–73. https://doi.org/10.1016/j.msea.2011.08.061.
Zhou, J., and Y. Liang. 2019. “Effect of water on the dynamic tensile mechanical properties of calcium silicate hydrate: Based on molecular dynamics simulation.” Materials 12 (17): 2837. https://doi.org/10.3390/ma12172837.
Zhu, W., J. J. Hughes, N. Bicanic, and C. J. Pearce. 2007. “Nanoindentation mapping of mechanical properties of cement paste and natural rocks.” Mater. Charact. 58 (11–12): 1189–1198. https://doi.org/10.1016/j.matchar.2007.05.018.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 149Issue 11November 2023

History

Received: Dec 2, 2022
Accepted: Jun 21, 2023
Published online: Aug 23, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 23, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, PR China. Email: [email protected]
Professor, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, PR China (corresponding author). Email: [email protected]
Ph.D. Candidate, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share