Technical Papers
Jan 9, 2024

Housing Development through the BIM Methodology to Reach the Powerhouse Standard by Applying Rammed-Earth Techniques and Solar Energy

Publication: Journal of Architectural Engineering
Volume 30, Issue 1

Abstract

As cities and economies grow, energy demands also grow, especially in developing countries, given the material production, construction, and operational processes of buildings and cities. Since the recent Powerhouse standard assumes that a building can generate as much energy as it will require during its lifespan, the present study aimed to implement this building standard in the Andean equatorial climate. For this purpose, a building energy model (BEM) integrated into a building information modeling (BIM) process design method was proposed, developing a prototype with vernacular technology, high solar potential, and local or regional data on embodied energy in accordance with a life cycle assessment (LCA) from cradle to grave. Solar potential estimations were complemented by system advisor model (SAM) tool projections. Because of the low energy content of the vernacular architecture proposal and prototype development with a high generation capacity, this standard can be met six times faster in the Andean equatorial climate than in extreme seasonal climates (8.53 years versus 60.0 years). The main goal of our research was to propose a methodological approach that integrates the BEM tool with vernacular concepts and materials and architectural formal criteria for high solar exploitation that, with background data from the literature, makes it possible to decipher the capability of the proposed energy standard.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by the Office of the Vice-Chancellor for Research, University of Cuenca (Universidad de Cuenca—UCuenca) and is part of the research project entitled “Modelado y mediciones de condiciones ambientales interiores e integración de energía solar, para alcanzar el Estándar Net-Zero en edificaciones FAUC [Modeling and measurements of indoor environmental conditions and solar integration to achieve the Net-Zero-Energy Building Standard in UCuenca Faculty of Architecture and Urbanism (Facultad de Arquitectura y Urbanismo—FAUC) Buildings].”

References

Abd Rashid, A. F., and S. Yusoff. 2015. “A review of life cycle assessment method for building industry.” Renewable Sustainable Energy Rev. 45: 244–248. https://doi.org/10.1016/j.rser.2015.01.043.
Alvarado, M. 2021. Determinación del consumo energético y emisión de CO2 en los procesos de fabricación del adobe. Cuenca, Azuay: Universidad del Azuay.
ARMA (Asphalt Roofing Manufacturers Association). 2016. “APP-modified bitumen roofing membrane.” Accessed December 24, 2023. https://www.holcimelevate.com/content/dam/fsbp/migrated-document/Documents/us/epd/101.1_ARMA_EPD_APPModifiedLowSlopedTorchApplied_20161028.pdf.
Bernhard, P. 2018. “Powerhouse.” asplan viak. Accessed December 24, 2023. https://smartcitybaerum.files.wordpress.com/2018/01/powerhouse-scb-2018-01-18.pdf.
Bin, G., and P. Parker. 2012. “Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home—The REEP House.” Appl. Energy 93: 24–32. https://doi.org/10.1016/j.apenergy.2011.05.055.
Byrne, J., and J. Taminiau. 2018. “Utilizing the urban fabric as the solar power plant of the future.” Energy Policy 21 (5): 31–49. https://doi.org/10.1016/0301-4215(93)90044-g.
Chastas, P., T. Theodosiou, and D. Bikas. 2016. “Embodied energy in residential buildings-towards the nearly zero energy building: A literature review.” Build. Environ. 105: 267–282. https://doi.org/10.1016/j.buildenv.2016.05.040.
CITEC UBB. 2013. “Manual de hermeticidad al aire de edificaciones.” J. Chem. Inf. Model. 53 (9). https://doi.org/10.1017/CBO9781107415324.004.
Climate-Data.Org. 2023. “Clima America del Sur.” Accessed December 24, 2023. https://es.climate-data.org/america-del-sur/.
ClimateData-Org. 2023. “Climate: Cuenca.” Accessed December 24, 2023. https://es.climate-data.org/location/875185/.
D’Amanzo, M., M. V. Mercado, and C. Ganem. 2020. “10 questions about zero energy buildings : A state-of-the-art.” Habitat Sustainable 10 (2): 24–41. https://doi.org/10.22320/07190700.2020.10.02.02.
Dascalaki, E. G., P. Argiropoulou, C. A. Balaras, K. G. Droutsa, and S. Kontoyiannidis. 2021. “Analysis of the embodied energy of construction materials in the life cycle assessment of Hellenic residential buildings.” Energy Build. 232: 110651. https://doi.org/10.1016/j.enbuild.2020.110651.
Delgado Orellana, G. J., and M. L. Orellana Samaniego. 2015. “Estimación de la radiación solar global diaria en el cantón Cuenca mediante la aplicación del modelo Bristow & Campbell [Politecnica Salesiana Cuenca].” Accessed December 24, 2023. http://dspace.ups.edu.ec/bitstream/123456789/8428/1/UPS-CT004934.pdf.
Dixit, M. K. 2017. “Embodied energy analysis of building materials: An improved IO-based hybrid method using sectoral disaggregation.” Energy 124: 46–58. https://doi.org/10.1016/j.energy.2017.02.047.
Eastman, C., P. Teicholz, R. Sack, and K. Liston. 2011. BIM handbook, a guide to building information modelling. 2nd ed. Hoboken, NJ: Wiley.
Fnais, A., Y. Rezgui, I. Petri, T. Beach, J. Yeung, A. Ghoroghi, and S. Kubicki. 2022. “The application of life cycle assessment in buildings: Challenges, and directions for future research.” Int. J. Life Cycle Assess. 27 (5): 627–654. https://doi.org/10.1007/s11367-022-02058-5.
Fraunhofer-Institut für Solare Energie systeme. 2023. “Photovoltaics Report (Issue February).” Accessed December 24, 2023. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
González, A., and L. Guerrero. 2022. “Bajareque tecnificado. Evaluación de energía incorporada y emisiones de CO2 en comparación con la edificación convencional Sistema constructivo alternativo para la vivienda rural de Torreón, México.” Vivienda y Comunidades Sustentables 11: 9–21. https://doi.org/10.32870/rvcs.v0i11.177.
Hachem, C. 2015. “Design of a base case mixed-use community and its energy performance.” Energy Procedia 78: 663–668. https://doi.org/10.1016/j.egypro.2015.11.056.
Hatt, T., G. Saelzer, R. Hempel, and A. Gerber. 2012. “Alto confort interior con mínimo consumo energético a partir de la implementación del estándar “Passivhaus” en. 123–134.” Accessed December 25, 2023. http://www.scielo.cl/pdf/rconst/v11n2/art11.pdf.
Ihobe. 2009. “Análisis de ciclo de vida y huella de carbono.” Ihobe S.A. Accessed December 25, 2023. https://www.ucursos.cl/ingenieria/2011/2/IN5129/1/material_docente/bajar?id=385043&lsar=1&file=3.
IRENA (International Renewable Energy Agency). 2021. “Sector coupling in facilitating integration of variable renewable energy in cities.” Accessed December 25, 2023. https://www.irena.org/publications/2021/Oct/Sector-Coupling-in-Cities.
Jordan, D., and S. Kurtz. 2018. Overview of field experience - degradation rates and lifetimes. Accessed 25 December 2023. https://www.nrel.gov/docs/fy15osti/65040.pdf.
Khan-Ankur, A., S. Kraus, T. Grube, R. Castro, and D. Stolten. 2022. “A Versatile Model for Estimating the Fuel Consumption of a Wide Range of Transport Modes.” Energies 15 (6). https://doi.org/10.3390/en15062232.
Kibert, C. J., and R. Srinivasan. 2016. “CHAPTER 10 Sustainable Construction : The Cutting Edge and Emerging Challenges.” Analytics for Building-Scale Sustainable Ecosystems, 225–249. Accessed December 25, 2023. https://www.begellhouse.com/journals/68910b986de95724.html.
Lopes, R. A., et al. 2016. “A cooperative net zero energy community to improve load matching.” Renewable Energy 93: 1–13. https://doi.org/10.1016/j.renene.2016.02.044.
Mendonca, P., and C. Vieira. 2022. “Embodied carbon and economic cost analysis of a contemporary house design using local and reused materials.” Sustainable Futures 4: 100100. https://doi.org/10.1016/j.sftr.2022.100100.
Ministerio de desarrollo urbano y vivienda. 2018. “Eficiencia Energética en Edificaciones Residencial.” Accessed December 24, 2023. https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2019/03/NEC-HS-EE-Final.pdf.
Montoya, P., M. Barbero, I. Javier, and G. Crespo. 2016. “calicostrada en la fortificación medieval : el caso de Serón de Nágima (Soria).” Actas de Las Segundas Jornadas Sobre Historia, Arquitectura y Construcción Fortificada. Accessed December 25, 2023. https://dialnet.unirioja.es/servlet/articulo?codigo=5991306.
Monterrosa, D., and H. Gil. 2020. “Determinación del efecto de la incorporación de diferentes polímeros termoplásticos en el desempeño ambiental de mezclas de asfalto.” Estructuras, Vías y Transporte. https://www.researchgate.net/publication/344407470.
Muñoz, C., and F. Quiroz. 2014. “Análisis de Ciclo de Vida en la determinación de la energía contenida y la huella de carbono en el proceso de fabricación del hormigón premezclado.Caso estudio planta productora Región del Bío Bío, Chile.” Revista Hábitat Sustentable 4 (2): 16–25.
Muñoz, E. 2019. Análisis y Factibilidad de costos en proyectos de construcción sostenible. Bogotá, Colombia: Universidad Nacional de Colombia.
Muñoz, C., C. Zaror, G. Saelzer, and A. Cuchí. 2012. “Estudio del flujo energético en el ciclo de vida de una vivienda y su implicancia en las emisiones de gases de efecto invernadero, durante la fase de construcción Caso Estudio: Vivienda Tipología Social. Región del Biobío, Chile.” Revista de La Construcción 11 (3): 125–145. https://doi.org/10.4067/s0718-915(2012000300011.
NREL (National Renewable Energy Laboratory). 2022. “System Advisor Model (2016.3.14).” DOE. Accessed December 25, 2023. https://sam.nrel.gov.
Osorio, J. 2010. Análisis comparativo de materiales bioconstructivos versus materiales clásicos utilizados en 85 viviendas sociales sector bancario en la unión. Los Rios, Chile: Universidad Austral de Chile (UACh).
Peng, J., L. Lu, and Y. Yang. 2013. “Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems.” Renewable Sustain. Energy Reviews 19: 255–274. https://doi.org/10.1016/j.rser.2012.11.035.
Quesada-Molina, F., and D. Bustillos-Yaguana. 2018. “Indoor environmental quality of urban residential buildings in Cuenca—Ecuador: Comfort standard.” Buildings 8 (7): 90. https://doi.org/10.3390/buildings8070090.
Ropo, M., H. Mustonen, M. Knuutila, M. Luoranen, and A. Kosonen. 2023. “Considering embodied CO2 emissions and carbon compensation cost in life cycle cost optimization of carbon-neutral building energy systems.” Environ. Impact Assess. Rev. 101: 107100. https://doi.org/10.1016/j.eiar.2023.107100.
Silvestre, J. D., J. De Brito, and M. D. Pinheiro. 2014. “Environmental impacts and benefits of the end-of-life of building materials—Calculation rules, results and contribution to a ‘cradle to cradle’ life cycle.” J. Cleaner Prod. 66: 37–45. https://doi.org/10.1016/j.jclepro.2013.10.028.
Snohetta Architecture. 2023. “What is a Powerhouse?” Accessed December 25, 2023. https://www.powerhouse.no/en/what-defines-the-powerhouse-standard/.
Torres-Quezada, J., A. Torres Avilés, A. Isalgue, and A. Pages-Ramon. 2022. “The evolution of embodied energy in Andean residential buildings. Methodology applied to Cuenca—Ecuador.” Energy Build. 259: 111858. https://doi.org/10.1016/j.enbuild.2022.111858.
Vanegas, A. 2018. Evaluación de la energía contenida, emisiones de CO2 y material particulado en la fabricación del ladrillo semi-mecanizado tochano en Cuenca, a través del análisis de ciclo de vida (ACV). Cuenca, Ecuador: Universidad de Cuenca.
Wadel, G., J. Avellaneda, and A. Cuchí. 2010. “Sustainability in industrialised architecture: Closing the materials cycle.” Informes de La Construccion 62 (517): 37–51. https://doi.org/10.3989/ic.09.067.
WEF (World Economic Forum). 2021. “This is how much of the Earth’s surface humans have modified.” Accessed December 25, 2023. https://www.weforum.org/agenda/2021/10/human-impact-earth-planet-change-development/.
Wong, J. H., M. Royapoor, and C. W. Chan. 2016. “Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems.” Renewable Sustainable Energy Rev. 58: 608–618. https://doi.org/10.1016/j.rser.2015.12.241.
Zabalza Bribián, I., A. Aranda Usón, and S. Scarpellini. 2009. “Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification.” Build. Environ. 44 (12): 2510–2520. https://doi.org/10.1016/j.buildenv.2009.05.001.
Zalamea, E., and A. Barragán. 2021. “Arquitectura, Sol y Energía.” In Imprenta universidad de cuenca, edited by M. P. Andrade, 1–262. Ucuenca: Ucuenca Press.
Zellerbach-Adams, T. 2022. “Cities rising energy consumption.” Stud. Energy 101. Accessed December 25, 2023. https://studentenergy.org/energy-101-cities-rising-energy-consumption/.
Zhai, Z. J., and J. M. Previtali. 2010. “Ancient vernacular architecture: Characteristics categorization and energy performance evaluation.” Energy Build. 42 (3): 357–365. https://doi.org/10.1016/j.enbuild.2009.10.002.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 30Issue 1March 2024

History

Received: Apr 6, 2023
Accepted: Oct 31, 2023
Published online: Jan 9, 2024
Published in print: Mar 1, 2024
Discussion open until: Jun 9, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Faculty of Architecture and Urbanism, Univ. of Cuenca, 12 de abril Av and Agustin Cueva St., Cuenca 010107, Ecuador (corresponding author). ORCID: https://orcid.org/0000-0001-5551-5026. Email: [email protected]
Joan Astudillo-Gomezcoello
Faculty of Architecture and Urbanism, Univ. of Cuenca, 12 de abril Av and Agustin Cueva St., Cuenca 010107, Ecuador.
Daniel Orellana-Castro
Faculty of Architecture and Urbanism, Univ. of Cuenca, 12 de abril Av and Agustin Cueva St., Cuenca 010107, Ecuador.
Antonio Barragán-Escandón
Energy Transtion Research Group, Universidad Politécnica Salesiana, Campus El Vecino, Calle Vieja 12–30 y Elia Liut, Azuay, Cuenca 010103, Ecuador.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share