State-of-the-Art Reviews
Feb 24, 2023

Thermal Comfort in Buildings: Scientometric Analysis and Systematic Review

Publication: Journal of Architectural Engineering
Volume 29, Issue 2

Abstract

The building sector is one of the most resource-exhausting areas in global energy consumption. Maintaining good thermal comfort for occupants is the leading energy demand in buildings. The primary purpose of the current study is to identify the development of research areas on occupant comfort, pinpoint the gaps in knowledge and recommend directions for future studies. A scientometric analysis and a comprehensive systematic literature review are conducted using 792 sources. It is evident from the exponential increase in published papers that scholars are highly interested in this research topic. However, discrepancies remain between the two fundamental models of evaluating thermal comfort. There is a pressing need to balance thermal comfort while increasing energy efficiency. The foundation of achieving this balance can only be done by correctly evaluating the surrounding environment of occupants and understanding all the factors influencing human thermal comfort conditions. There is also a high potential in employing industry 4.0 technologies to assist in designing more innovative solutions for thermal comfort. Furthermore, there is a need for local thermal standards targeting specific regions. The lack of interoperability between 3D building information modeling (BIM) and energy simulation tools remains an obstacle.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdullah, H. K., and H. Z. Alibaba. 2020. “Window design of naturally ventilated offices in the Mediterranean climate in terms of CO2 and thermal comfort performance.” Sustainability 12 (2): 473. https://doi.org/10.3390/su12020473.
Abuelnuor, A. A. A., A. A. M. Omara, K. M. Saqr, and I. H. I. Elhag. 2018. “Improving indoor thermal comfort by using phase change materials: A review.” Int. J. Energy Res. 42 (6): 2084–2103. https://doi.org/10.1002/er.4000.
Acar, U., O. Kaska, and N. Tokgoz. 2021. “Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey.” J. Build. Eng. 42: 102499. https://doi.org/10.1016/j.jobe.2021.102499.
Adekunle, T. O., and M. Nikolopoulou. 2016. “Thermal comfort, summertime temperatures and overheating in prefabricated timber housing.” Build. Environ. 103: 21–35. https://doi.org/10.1016/j.buildenv.2016.04.001.
Adunola, A. O. 2014. “Evaluation of urban residential thermal comfort in relation to indoor and outdoor air temperatures in Ibadan, Nigeria.” Build. Environ. 75: 190–205. https://doi.org/10.1016/j.buildenv.2014.02.007.
Afolabi, L. O., Z. M. Ariff, P. S. M. Megat-Yusoff, H. H. Al-Kayiem, A. I. Arogundade, and O. T. Afolabi-Owolabi. 2019. “Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector.” Sol. Energy 181: 464–474. https://doi.org/10.1016/j.solener.2019.02.029.
Ahangari, M., and M. Maerefat. 2019. “An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions.” Sustainable Cities Soc. 44: 120–129. https://doi.org/10.1016/j.scs.2018.09.008.
Ahmed, T., P. Kumar, and L. Mottet. 2021. “Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality.” Renewable Sustainable Energy Rev. 138: 110669. https://doi.org/10.1016/j.rser.2020.110669.
Ai, Z. T., C. M. Mak, J. L. Niu, and Z. R. Li. 2011. “Effect of balconies on thermal comfort in wind-induced, naturally ventilated low-rise buildings.” Build. Serv. Eng. Res. Technol. 32 (3): 277–292. https://doi.org/10.1177/0143624410396431.
Akimoto, T., S.-i. Tanabe, T. Yanai, and M. Sasaki. 2010. “Thermal comfort and productivity—Evaluation of workplace environment in a task conditioned office.” Build. Environ. 45 (1): 45–50. https://doi.org/10.1016/j.buildenv.2009.06.022.
Al-Absi, Z. A., M. I. M. Hafizal, M. Ismail, and A. Ghazali. 2021. “Towards sustainable development: Building’s retrofitting with pcms to enhance the indoor thermal comfort in tropical climate, Malaysia.” Sustainability 13 (7): 3614. https://doi.org/10.3390/su13073614.
Albatayneh, A., M. Jaradat, M. B. AlKhatib, R. Abdallah, A. Juaidi, and F. Manzano-Agugliaro. 2021. “The significance of the adaptive thermal comfort practice over the structure retrofits to sustain indoor thermal comfort.” Energies 14 (10): 2946. https://doi.org/10.3390/en14102946.
Al Horr, Y., M. Katafygiotou, E. Elsarrag, M. Arif, A. Kaushik, and A. Mazroei. 2016a. “Occupant productivity and indoor environment quality linked to global sustainability assessment system.” In Proc., 5th World Construction Symp. Colombo, Sri Lanka: Ceylon Institute of Builders.
Al Horr, Y., M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, and E. Elsarrag. 2016b. “Occupant productivity and office indoor environment quality: A review of the literature.” Build. Environ. 105: 369–389. https://doi.org/10.1016/j.buildenv.2016.06.001.
Ali, S. F., L. Sharma, D. Rakshit, and B. Bhattacharjee. 2020. “Influence of passive design parameters on thermal comfort of an office space in a building in Delhi.” J. Archit. Eng. 26 (3): 04020017.
Aliakbari, K., A. Ebrahimi-Moghadam, and P. Ildarabadi. 2021. “Investigating the impact of a novel transparent nano-insulation in building windows on thermal comfort conditions and energy consumptions in different climates of Iran.” Therm. Sci. Eng. Prog. 25: 101009. https://doi.org/10.1016/j.tsep.2021.101009.
Alizadeh, M., and S. M. Sadrameli. 2019. “Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: Experimental design and response surface approach.” Energy Build. 188–189: 297–313. https://doi.org/10.1016/j.enbuild.2019.02.020.
Alonso, A., J. Llanos, R. Escandón, and J. J. Sendra. 2021. “Effects of the COVID-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a Mediterranean climate.” Sustainability 13 (5): 2699–2617. https://doi.org/10.3390/su13052699.
Altan, H., I. Ward, J. Mohelnikova, and F. Vajkay. 2009. “An internal assessment of the thermal comfort and daylighting conditions of a naturally ventilated building with an active glazed facade in a temperate climate.” Energy Build. 41 (1): 36–50. https://doi.org/10.1016/j.enbuild.2008.07.009.
Al-Yasiri, Q., and M. Szabó. 2021. “Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis.” J. Build. Eng. 36: 102122. https://doi.org/10.1016/j.jobe.2020.102122.
Alzahrani, H., M. Arif, A. Kaushik, J. Goulding, and D. Heesom. 2018. “Artificial neural network analysis of teachers’ performance against thermal comfort.” Int. J. Build. Pathol. Adapt. 39 (1): 20–32. https://doi.org/10.1108/IJBPA-11-2019-0098.
Amir, A., M. F. Mohamed, M. K. A. M. Sulaiman, and W. F. M. Yusoff. 2019. “Assessment of indoor thermal condition of a low-cost single story detached house: A case study in Malaysia.” Alam Cipta 12 (Special Is): 80–88.
Amoruso, F. M., U. Dietrich, and T. Schuetze. 2019. “Indoor thermal comfort improvement through the integrated BIM-parametric workflow-based sustainable renovation of an exemplary apartment in Seoul, Korea.” Sustainability 11 (14): 3950. https://doi.org/10.3390/su11143950.
Anand, P., C. Deb, and R. Alur. 2017. “A simplified tool for building layout design based on thermal comfort simulations.” Front. Archit. Res. 6 (2): 218–230. https://doi.org/10.1016/j.foar.2017.03.001.
Aparicio-Ruiz, P., E. Barbadilla-Martín, J. Guadix, and J. Muñuzuri. 2021. “A field study on adaptive thermal comfort in Spanish primary classrooms during summer season.” Build. Environ. 203: 108089. https://doi.org/10.1016/j.buildenv.2021.108089.
Ardiyanto, A., N. H. Hamid, and Y. Sutopo. 2019. “Thermal comfort of colonial office building, Semarang using EnergyPlus simulation.” ARPN J. Eng. Appl. Sci. 14 (4): 834–841.
Arif, M., M. Katafygiotou, A. Mazroei, A. Kaushik, and E. Elsarrag. 2016. “Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature.” Int. J. Sustainable Built Environ. 5 (1): 1–11. https://doi.org/10.1016/j.ijsbe.2016.03.006.
ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineering). 2010. “ASHRAE STANDARD 55 thermal environmental conditions for human occupancy.” Int. J. Refrig. 2 (1): 56–57.
Attia, S., and S. Carlucci. 2015. “Impact of different thermal comfort models on zero energy residential buildings in hot climate.” Energy Build. 102: 117–128. https://doi.org/10.1016/j.enbuild.2015.05.017.
Attia, S., J. L. M. Hensen, L. Beltrán, and A. De Herde. 2012. “Selection criteria for building performance simulation tools: Contrasting architects’ and engineers’ needs.” J. Build. Perform. Simul. 5 (3): 155–169. https://doi.org/10.1080/19401493.2010.549573.
Auffenberg, F., S. Snow, S. Stein, and A. Rogers. 2017. “A comfort-based approach to smart heating and air conditioning.” ACM Trans. Intell. Syst. Technol. (TIST) 9 (3): 1–20.
Baas, J., M. Schotten, A. Plume, G. Côté, and R. Karimi. 2020. “Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies.” Quant. Sci. Stud. 1 (1): 377–386. https://doi.org/10.1162/qss_a_00019.
Bagheri-Esfeh, H., H. Safikhani, and S. Motahar. 2020. “Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm.” J. Storage Mater. 32: 101772. https://doi.org/10.1016/j.est.2020.101772.
Bagheri Moghaddam, F., J. M. Fort Mir, I. Navarro Delgado, and E. Redondo Dominguez. 2021. “Evaluation of thermal comfort performance of a vertical garden on a glazed façade and its effect on building and urban scale, case study: An office building in Barcelona.” Sustainability 13 (12): 6706. https://doi.org/10.3390/su13126706.
Baker, N., and M. Standeven. 2007. “A behavioural approach to thermal comfort assessment.” Int. J. Sol. Energy 19 (1–3): 21–35.
Bakó-Biró, Z., D. J. Clements-Croome, N. Kochhar, H. B. Awbi, and M. J. Williams. 2012. “Ventilation rates in schools and pupils’ performance.” Build. Environ. 48 (1): 215–223. https://doi.org/10.1016/j.buildenv.2011.08.018.
Balbis-Morejón, M., J. M. Rey-Hernández, C. Amaris-Castilla, E. Velasco-Gómez, J. F. San José-Alonso, and F. J. Rey-Martínez. 2020. “Experimental study and analysis of thermal comfort in a university campus building in tropical climate.” Sustainability 12 (21): 8886–8818. https://doi.org/10.3390/su12218886.
Beccali, M., V. Strazzeri, M. L. Germanà, V. Melluso, and A. Galatioto. 2018. “Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview.” Renewable Sustainable Energy Rev. 82: 1726–1736. https://doi.org/10.1016/j.rser.2017.06.062.
Bluyssen, P. M., M. Aries, and P. van Dommelen. 2011. “Comfort of workers in office buildings: The European HOPE project.” Build. Environ. 46 (1): 280–288. https://doi.org/10.1016/j.buildenv.2010.07.024.
Boerstra, A. C., M. t. Kulve, J. Toftum, M. G. L. C. Loomans, B. W. Olesen, and J. L. M. Hensen. 2015. “Comfort and performance impact of personal control over thermal environment in summer: Results from a laboratory study.” Build. Environ. 87: 315–326. https://doi.org/10.1016/j.buildenv.2014.12.022.
Bogdan, A., and M. Chludzinska. 2010. “Assessment of thermal comfort using personalized ventilation.” HVAC&R Res. 16 (4): 529–542. https://doi.org/10.1080/10789669.2010.10390919.
Borrego, M., M. J. Foster, and J. E. Froyd. 2014. “Systematic literature reviews in engineering education and other developing interdisciplinary fields.” J. Eng. Educ. 103 (1): 45–76. https://doi.org/10.1002/jee.20038.
Bouzidi, Y., Z. El Akili, A. Gademer, N. Tazi, and A. Chahboun. 2021. “How can we adapt thermal comfort for disabled patients? A case study of French healthcare buildings in summer.” Energies 14 (15): 4530. https://doi.org/10.3390/en14154530.
Branco, G., B. Lachal, P. Gallinelli, and W. Weber. 2004. “Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data.” Energy Build. 36 (6): 543–555. https://doi.org/10.1016/j.enbuild.2004.01.028.
Braulio-Gonzalo, M., M. D. Bovea, M. J. Ruá, and P. Juan. 2016. “A methodology for predicting the energy performance and indoor thermal comfort of residential stocks on the neighbourhood and city scales. A case study in Spain.” J. Cleaner Prod. 139: 646–665. https://doi.org/10.1016/j.jclepro.2016.08.059.
Brik, B., M. Esseghir, L. Merghem-Boulahia, and H. Snoussi. 2021. “An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people.” Build. Environ. 203: 108056. https://doi.org/10.1016/j.buildenv.2021.108056.
Bueno, A. M., A. A. de Paula Xavier, and E. E. Broday. 2021. “Evaluating the connection between thermal comfort and productivity in buildings: A systematic literature review.” Buildings 11 (6): 244. https://doi.org/10.3390/buildings11060244.
Buratti, C., E. Moretti, E. Belloni, and F. Cotana. 2013. “Unsteady simulation of energy performance and thermal comfort in non-residential buildings.” Build. Environ. 59: 482–491. https://doi.org/10.1016/j.buildenv.2012.09.015.
Buyak, N. A., V. I. Deshko, and I. O. Sukhodub. 2017. “Buildings energy use and human thermal comfort according to energy and exergy approach.” Energy Build. 146: 172–181. https://doi.org/10.1016/j.enbuild.2017.04.008.
Calzolari, G., and W. Liu. 2021. “Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review.” Build. Environ. 206: 108315. https://doi.org/10.1016/j.buildenv.2021.108315.
Cao, S.-J., and H.-Y. Deng. 2019. “Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings.” Sci. Technol. Built Environ. 25 (3): 309–321. https://doi.org/10.1080/23744731.2018.1526016.
Cao, W., L. Yang, Q. Zhang, L. Chen, and W. Wu. 2021. “Evaluation of rural dwellings’ energy-saving retrofit with adaptive thermal comfort theory.” Sustainability 13 (10): 5350. https://doi.org/10.3390/su13105350.
Cappelletti, F., A. Prada, P. Romagnoni, and A. Gasparella. 2014. “Passive performance of glazed components in heating and cooling of an open-space office under controlled indoor thermal comfort.” Build. Environ. 72: 131–144. https://doi.org/10.1016/j.buildenv.2013.10.022.
Carlucci, S., L. Bai, R. de Dear, and L. Yang. 2018. “Review of adaptive thermal comfort models in built environmental regulatory documents.” Build. Environ. 137: 73–89. https://doi.org/10.1016/j.buildenv.2018.03.053.
Catalina, T., J. Virgone, and F. Kuznik. 2009. “Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling.” Build. Environ. 44 (8): 1740–1750. https://doi.org/10.1016/j.buildenv.2008.11.015.
Causone, F., A. Tatti, M. Pietrobon, F. Zanghirella, and L. Pagliano. 2019. “Yearly operational performance of a nZEB in the Mediterranean climate.” Energy Build. 198: 243–260. https://doi.org/10.1016/j.enbuild.2019.05.062.
Cetin, K. S., L. Manuel, and A. Novoselac. 2016a. “Effect of technology-enabled time-of-use energy pricing on thermal comfort and energy use in mechanically-conditioned residential buildings in cooling dominated climates.” Build. Environ. 96: 118–130. https://doi.org/10.1016/j.buildenv.2015.11.012.
Cetin, K. S., L. Manuel, and A. Novoselac. 2016b. “Thermal comfort evaluation for mechanically conditioned buildings using response surfaces in an uncertainty analysis framework.” Sci. Technol. Built Environ. 22 (2): 140–152. https://doi.org/10.1080/23744731.2015.1100022.
Charoenkit, S., and S. Yiemwattana. 2016. “Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review.” Build. Environ. 105: 82–94. https://doi.org/10.1016/j.buildenv.2016.05.031.
Che, W. W., C. Y. Tso, L. Sun, D. Y. K. Ip, H. Lee, C. Y. H. Chao, and A. K. H. Lau. 2019. “Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system.” Energy Build. 201: 202–215. https://doi.org/10.1016/j.enbuild.2019.06.029.
Chegari, B., M. Tabaa, E. Simeu, F. Moutaouakkil, and H. Medromi. 2021. “Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms.” Energy Build. 239: 110839. https://doi.org/10.1016/j.enbuild.2021.110839.
Chen, A., and V. W.-C. Chang. 2012. “Human health and thermal comfort of office workers in Singapore.” Build. Environ. 58: 172–178. https://doi.org/10.1016/j.buildenv.2012.07.004.
Chen, H., B. Moshfegh, and M. Cehlin. 2013. “Computational investigation on the factors influencing thermal comfort for impinging jet ventilation.” Build. Environ. 66: 29–41. https://doi.org/10.1016/j.buildenv.2013.04.018.
Chenari, B., J. D. Carrilho, G. Botte, and M. G. d. Silva. 2016. “Towards energy-efficient ventilation in buildings: Development of the smart window ventilation system.” J. Clean Energy Technol. 4 (6): 457–461. https://doi.org/10.18178/JOCET.2016.4.6.332.
Chiang, W. H., C. Y. Wang, and J. S. Huang. 2012. “Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region.” Build. Environ. 48 (1): 113–127. https://doi.org/10.1016/j.buildenv.2011.09.002.
Cho, H.-J., and J.-W. Jeong. 2018. “Evaluation of thermal comfort in an office building served by a liquid desiccant-assisted evaporative cooling air-conditioning system.” Energy Build. 172: 361–370. https://doi.org/10.1016/j.enbuild.2018.05.016.
Chowdhury, A. A., M. G. Rasul, and M. M. K. Khan. 2008. “Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate.” Appl. Energy 85 (6): 449–462. https://doi.org/10.1016/j.apenergy.2007.10.001.
Conceição, E., C. Santiago, M. Lúcio, and H. Awbi. 2018. “Predicting the air quality, thermal comfort and draught risk for a virtual classroom with desk-type personalized ventilation systems.” Buildings 8 (2): 35. https://doi.org/10.3390/buildings8020035.
Conejo-Fernández, J., F. Cappelletti, and A. Gasparella. 2021. “Including the effect of solar radiation in dynamic indoor thermal comfort indices.” Renewable Energy 165: 151–161. https://doi.org/10.1016/j.renene.2020.11.005.
Costanzo, V., G. Evola, L. Marletta, and F. Nocera. 2018. “The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings.” Build. Simul. 11 (6): 1145–1161. https://doi.org/10.1007/s12273-018-0468-2.
Crawley, D. B., J. W. Hand, M. Kummert, and B. T. Griffith. 2008. “Contrasting the capabilities of building energy performance simulation programs.” Build. Environ. 43 (4): 661–673. https://doi.org/10.1016/j.buildenv.2006.10.027.
Daum, D., F. Haldi, and N. Morel. 2011. “A personalized measure of thermal comfort for building controls.” Build. Environ. 46 (1): 3–11. https://doi.org/10.1016/j.buildenv.2010.06.011.
de Abreu-Harbich, L. V., V. L. A. Chaves, and M. C. G. O. Brandstetter. 2018. “Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate.” Build. Environ. 135: 257–268. https://doi.org/10.1016/j.buildenv.2018.03.017.
De Dear, R. 2011. “Revisiting an old hypothesis of human thermal perception: Alliesthesia.” Build. Res. Inf. 39 (2): 108–117. https://doi.org/10.1080/09613218.2011.552269.
de Dear, R. J., and G. S. Brager. 1998. Developing an adaptive model of thermal comfort and preference. Peachtree Corners, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineering.
De Dear, R. J., and G. S. Brager. 2002. “Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE standard 55.” Energy Build. 34 (6): 549–561. https://doi.org/10.1016/S0378-7788(02)00005-1.
de Dear, R., J. Kim, C. Candido, and M. Deuble. 2015. “Adaptive thermal comfort in Australian school classrooms.” Build. Res. Inf. 43 (3): 383–398. https://doi.org/10.1080/09613218.2015.991627.
de Dear, R. J., K. G. Leow, and S. C. Foo. 1991. “Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore.” Int. J. Biometeorol. 34 (4): 259–265. https://doi.org/10.1007/BF01041840.
De Giuli, V., O. Da Pos, and M. De Carli. 2012. “Indoor environmental quality and pupil perception in Italian primary schools.” Build. Environ. 56: 335–345. https://doi.org/10.1016/j.buildenv.2012.03.024.
Delgarm, N., B. Sajadi, and S. Delgarm. 2016. “Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC).” Energy Build. 131: 42–53. https://doi.org/10.1016/j.enbuild.2016.09.003.
Deng, X., and Z. Tan. 2020. “Numerical analysis of local thermal comfort in a plan office under natural ventilation.” Indoor Built Environ. 29 (7): 972–986. https://doi.org/10.1177/1420326X19866497.
Deng, Z., and Q. Chen. 2018. “Artificial neural network models using thermal sensations and occupants’ behavior for predicting thermal comfort.” Energy Build. 174: 587–602. https://doi.org/10.1016/j.enbuild.2018.06.060.
Deng, Z., and Q. Chen. 2021. “Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems.” Energy Build. 238: 110860. https://doi.org/10.1016/j.enbuild.2021.110860.
de Oliveira, C. C., R. F. Rupp, and E. Ghisi. 2021. “Influence of environmental variables on thermal comfort and air quality perception in office buildings in the humid subtropical climate zone of Brazil.” Energy Build. 243: 110982. https://doi.org/10.1016/j.enbuild.2021.110982.
De Wilde, P. 2014. “The gap between predicted and measured energy performance of buildings: A framework for investigation.” Autom. Constr. 41: 40–49. https://doi.org/10.1016/j.autcon.2014.02.009.
de Wilde, P. 2019. “Ten questions concerning building performance analysis.” Build. Environ. 153: 110–117. https://doi.org/10.1016/j.buildenv.2019.02.019.
Dias, D., J. Machado, V. Leal, and A. Mendes. 2014. “Impact of using cool paints on energy demand and thermal comfort of a residential building.” Appl. Therm. Eng. 65 (1–2): 273–281. https://doi.org/10.1016/j.applthermaleng.2013.12.056.
Diler, Y., C. Turhan, Z. Durmuş Arsan, and G. Gökçen Akkurt. 2021. “Thermal comfort analysis of historical mosques. Case study: The Ulu mosque, Manisa, Turkey.” Energy Build. 252: 111441. https://doi.org/10.1016/j.enbuild.2021.111441.
Djamila, H. 2017. “Indoor thermal comfort predictions: Selected issues and trends.” Renewable Sustainable Energy Rev. 74: 569–580. https://doi.org/10.1016/j.rser.2017.02.076.
Dodoo, A., and J. Ayarkwa. 2019. “Effects of climate change for thermal comfort and energy performance of residential buildings in a Sub-Saharan African climate.” Buildings 9 (10): 215. https://doi.org/10.3390/buildings9100215.
Dong, X., V. Soebarto, and M. Griffith. 2014. “Achieving thermal comfort in naturally ventilated rammed earth houses.” Build. Environ. 82: 588–598. https://doi.org/10.1016/j.buildenv.2014.09.029.
Dounis, A. I., M. J. Santamouris, C. C. Lefas, and D. E. Manolakis. 1994. “Thermal-comfort degradation by a visual comfort fuzzy-reasoning machine under natural ventilation.” Appl. Energy 48 (2): 115–130. https://doi.org/10.1016/0306-2619(94)90018-3.
Draganova, V. Y., H. Yokose, K. Tsuzuki, and Y. Nabeshima. 2021. “Field study on nationality differences in adaptive thermal comfort of university students in dormitories during summer in Japan.” Atmosphere 12 (5): 566. https://doi.org/10.3390/atmos12050566.
Durach, C. F., J. Kembro, and A. Wieland. 2017. “A new paradigm for systematic literature reviews in supply chain management.” J. Supply Chain Manage. 53 (4): 67–85. https://doi.org/10.1111/jscm.12145.
EBC (Energy in Buildings and Communities Programme). 2013. Total energy use in buildings: Analysis and evaluation methods. Miyagi, Japan: Tohoku Univ.
Edwards, L., and P. A. Torcellini. 2002. A literature review of the effects of natural light on building occupants. Contract No. DE-AC36-99-GO10337. Oak Ridge, TN: DOE Scientific and Technical Information.
Elizabeth Amudhini Stephen, S. 2018. “Optimization of thermal comfort in office buildings using non-traditional optimization techniques.” Int. J. Civ. Eng. Technol. 9 (8): 365–377.
Elnaklah, R., A. Alnuaimi, B. S. Alotaibi, E. Topriska, I. Walker, and S. Natarajan. 2021. “Thermal comfort standards in the Middle East: Current and future challenges.” Build. Environ. 200: 107899. https://doi.org/10.1016/j.buildenv.2021.107899.
Elshafei, G., S. Vilcekova, M. Zelenakova, and A. M. Negm. 2021. “Towards an adaptation of efficient passive design for thermal comfort buildings.” Sustainability 13 (17): 9570. https://doi.org/10.3390/su13179570.
Escandón, R., F. Ascione, N. Bianco, G. M. Mauro, R. Suárez, and J. J. Sendra. 2019a. “Thermal comfort prediction in a building category: Artificial neural network generation from calibrated models for a social housing stock in southern Europe.” Appl. Therm. Eng. 150: 492–505. https://doi.org/10.1016/j.applthermaleng.2019.01.013.
Escandón, R., R. Suárez, J. J. Sendra, F. Ascione, N. Bianco, and G. M. Mauro. 2019b. “Predicting the impact of climate change on thermal comfort in a building category: The case of linear-type social housing stock in Southern Spain.” Energies 12 (11): 2238. https://doi.org/10.3390/en12122238.
Evola, G., V. Costanzo, C. Magrì, G. Margani, L. Marletta, and E. Naboni. 2020. “A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues.” Energy Build. 216: 109946. https://doi.org/10.1016/j.enbuild.2020.109946.
Evola, G., L. Marletta, and F. Sicurella. 2013. “A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings.” Build. Environ. 59: 517–527. https://doi.org/10.1016/j.buildenv.2012.09.021.
Fahmy, M., M. Morsy, H. Abd Elshakour, and A. M. Belal. 2018. “Effect of thermal insulation on building thermal comfort and energy consumption in Egypt.” J. Adv. Res. Appl. Mech. J. Homepage 43: 8–19.
Fanger, P. O. 1970. Thermal comfort. Analysis and applications in environmental engineering. Copenhagen, Denmark: Danish Technical Press.
Fathollahzadeh, M. H., G. Heidarinejad, and H. Pasdarshahri. 2015. “Prediction of thermal comfort, IAQ, and energy consumption in a dense occupancy environment with the under floor air distribution system.” Build. Environ. 90: 96–104. https://doi.org/10.1016/j.buildenv.2015.03.019.
Felix, M., and E. Elsamahy. 2017. “The efficiency of using different outer wall construction materials to achieve thermal comfort in various climatic zones.” Energy Procedia 115: 321–331. https://doi.org/10.1016/j.egypro.2017.05.029.
Feng, G., B. Dou, X. Xu, D. Chi, Y. Sun, and P. Hou. 2017. “Research on energy efficiency design key parameters of envelope for nearly zero energy buildings in cold area.” Procedia Eng. 205: 686–693. https://doi.org/10.1016/j.proeng.2017.09.885.
Feng, Y., S. Liu, J. Wang, J. Yang, Y.-L. Jao, and N. Wang. 2022. “Data-driven personal thermal comfort prediction: A literature review.” Renewable Sustainable Energy Rev. 161: 112357. https://doi.org/10.1016/j.rser.2022.112357.
Feng, Z., X. Zhou, S. Xu, J. Ding, and S.-J. Cao. 2018. “Impacts of humidification process on indoor thermal comfort and air quality using portable ultrasonic humidifier.” Build. Environ. 133: 62–72. https://doi.org/10.1016/j.buildenv.2018.02.011.
Figueiredo, A., R. Vicente, J. Lapa, C. Cardoso, F. Rodrigues, and J. Kämpf. 2017. “Indoor thermal comfort assessment using different constructive solutions incorporating PCM.” Appl. Energy 208: 1208–1221. https://doi.org/10.1016/j.apenergy.2017.09.032.
Forcada, N., M. Gangolells, M. Casals, B. Tejedor, M. Macarulla, and K. Gaspar. 2021. “Field study on adaptive thermal comfort models for nursing homes in the Mediterranean climate.” Energy Build. 252: 111475. https://doi.org/10.1016/j.enbuild.2021.111475.
Fu, C., Z. zheng, C. M. Mak, Z. Fang, M. O. Oladokun, Y. Zhang, and T. Tang. 2020. “Thermal comfort study in prefab construction site office in subtropical China.” Energy Build. 217: 109958. https://doi.org/10.1016/j.enbuild.2020.109958.
Galagoda, R. U., G. Y. Jayasinghe, R. U. Halwatura, and H. T. Rupasinghe. 2018. “The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort.” Urban For. Urban Greening 34: 1–9. https://doi.org/10.1016/j.ufug.2018.05.008.
Gan, V. J. L., H. Luo, Y. Tan, M. Deng, and H. L. Kwok. 2021. “BIM and data-driven predictive analysis of optimum thermal comfort for indoor environment.” Sensors 21 (13): 4401. https://doi.org/10.3390/s21134401.
Gangisetti, K., D. E. Claridge, J. Srebric, and M. T. Paulus. 2016. “Influence of reduced VAV flow settings on indoor thermal comfort in an office space.” Build. Simul. 9 (1): 101–111. https://doi.org/10.1007/s12273-015-0254-3.
Gautam, B., H. B. Rijal, M. Shukuya, and H. Imagawa. 2019. “A field investigation on the wintry thermal comfort and clothing adjustment of residents in traditional Nepalese houses.” J. Build. Eng. 26: 100886. https://doi.org/10.1016/j.jobe.2019.100886.
Ghaddar, D., M. Itani, N. Ghaddar, K. Ghali, and J. Zeaiter. 2021. “Model-based adaptive controller for personalized ventilation and thermal comfort in naturally ventilated spaces.” Build. Simul. 14 (6): 1757–1771. https://doi.org/10.1007/s12273-021-0783-x.
Ghaderian, M., and F. Veysi. 2021. “Multi-objective optimization of energy efficiency and thermal comfort in an existing office building using NSGA-II with fitness approximation: A case study.” J. Build. Eng. 41: 102440. https://doi.org/10.1016/j.jobe.2021.102440.
Ghilardi, L. M. P., A. F. Castelli, L. Moretti, M. Morini, and E. Martelli. 2021. “Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings.” Appl. Energy 302: 117480. https://doi.org/10.1016/j.apenergy.2021.117480.
Gładyszewska-Fiedoruk, K., and M. J. Sulewska. 2020. “Thermal comfort evaluation using linear discriminant analysis (LDA) and artificial neural networks (ANNs).” Energies 13 (3): 538. https://doi.org/10.3390/en13030538.
Godithi, S. B., E. Sachdeva, V. Garg, R. Brown, C. Kohler, and R. Rawal. 2019. “A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems.” Intell. Build. Int. 11 (2): 75–104. https://doi.org/10.1080/17508975.2018.1543179.
Gou, S., V. M. Nik, J.-L. Scartezzini, Q. Zhao, and Z. Li. 2018a. “Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand.” Energy Build. 169: 484–506. https://doi.org/10.1016/j.enbuild.2017.09.095.
Gou, Z., W. Gamage, S. Lau, and S. Lau. 2018b. “An investigation of thermal comfort and adaptive behaviors in naturally ventilated residential buildings in tropical climates: A pilot study.” Buildings 8 (1): 5. https://doi.org/10.3390/buildings8010005.
Goudarzi, N., M. Sheikhshahrokhdehkordi, J. Khalesi, and S. Hosseiniirani. 2021. “Airflow and thermal comfort evaluation of a room with different outlet opening sizes and elevations ventilated by a two-sided wind catcher.” J. Build. Eng. 37: 102112. https://doi.org/10.1016/j.jobe.2020.102112.
Grygierek, K., and I. Sarna. 2020. “Impact of passive cooling on thermal comfort in a single-family building for current and future climate conditions.” Energies 13 (20): 5332. https://doi.org/10.3390/en13205332.
Guevara, G., G. Soriano, and I. Mino-Rodriguez. 2021. “Thermal comfort in university classrooms: An experimental study in the tropics.” Build. Environ. 187: 107430. https://doi.org/10.1016/j.buildenv.2020.107430.
Guo, Y., and D. Bart. 2020. “Optimization of design parameters for office buildings with climatic adaptability based on energy demand and thermal comfort.” Sustainability 12 (9): 3540. https://doi.org/10.3390/su12093540.
Haddad, S., P. Osmond, and S. King. 2019. “Application of adaptive thermal comfort methods for Iranian schoolchildren.” Build. Res. Inf. 47 (2): 173–189. https://doi.org/10.1080/09613218.2016.1259290.
Hagentoft, C.-E., and S. Pallin. 2021. “A conceptual model for how to design for building envelope characteristics. Impact of thermal comfort intervals and thermal mass on commercial buildings in U.S. climates.” J. Build. Eng. 35: 101994. https://doi.org/10.1016/j.jobe.2020.101994.
Haghighat, F., A. C. Megri, G. Donnini, and G. Giorgi. 2000. “Responses of disabled, temporarily III, and elderly persons to thermal environments.” ASHRAE Trans. 106 (2): 329.
Hajdukiewicz, M., M. Geron, and M. M. Keane. 2013. “Calibrated CFD simulation to evaluate thermal comfort in a highly-glazed naturally ventilated room.” Build. Environ. 70: 73–89. https://doi.org/10.1016/j.buildenv.2013.08.020.
Halawa, E., and J. Van Hoof. 2012. “The adaptive approach to thermal comfort: A critical overview.” Energy Build. 51: 101–110. https://doi.org/10.1016/j.enbuild.2012.04.011.
Halhoul Merabet, G., M. Essaaidi, M. Ben Haddou, B. Qolomany, J. Qadir, M. Anan, A. Al-Fuqaha, M. R. Abid, and D. Benhaddou. 2021. “Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques.” Renewable Sustainable Energy Rev. 144: 110969. https://doi.org/10.1016/j.rser.2021.110969.
Hamdy, M., A. Hasan, and K. Siren. 2011. “Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme.” Energy Build. 43 (9): 2055–2067. https://doi.org/10.1016/j.enbuild.2011.04.006.
Hang, L., and D.-H. Kim. 2018. “Enhanced model-based predictive control system based on fuzzy logic for maintaining thermal comfort in IoT smart space.” Appl. Sci. 8 (7): 1031. https://doi.org/10.3390/app8071031.
He, Y., M. Liu, T. Kvan, and S. Peng. 2017. “An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones.” Appl. Energy 187: 717–731. https://doi.org/10.1016/j.apenergy.2016.11.098.
Heibati, S., W. Maref, and H. H. Saber. 2021. “Assessing the energy, indoor air quality and moisture performance for a three-story building using an integrated model, part two: Integrating the indoor air quality, moisture and thermal comfort.” Energies 14 (16): 4915. https://doi.org/10.3390/en14164915.
Hellwig, R. T., D. Teli, M. Schweiker, J.-H. Choi, M. C. J. Lee, R. Mora, R. Rawal, Z. Wang, and F. Al-Atrash. 2019. “A framework for adopting adaptive thermal comfort principles in design and operation of buildings.” Energy Build. 205: 109476. https://doi.org/10.1016/j.enbuild.2019.109476.
Heracleous, C., and A. Michael. 2019. “Experimental assessment of the impact of natural ventilation on indoor air quality and thermal comfort conditions of educational buildings in the Eastern Mediterranean region during the heating period.” J. Build. Eng. 26: 100917. https://doi.org/10.1016/j.jobe.2019.100917.
Heracleous, C., and A. Michael. 2020. “Thermal comfort models and perception of users in free-running school buildings of East-Mediterranean region.” Energy Build. 215: 109912. https://doi.org/10.1016/j.enbuild.2020.109912.
Hilliaho, K., J. Lahdensivu, and J. Vinha. 2015. “Glazed space thermal simulation with IDA-ICE 4.61 software—Suitability analysis with case study.” Energy Build. 89: 132–141. https://doi.org/10.1016/j.enbuild.2014.12.041.
Homod, R. Z., A. Almusaed, A. Almssad, M. K. Jaafar, M. Goodarzi, and K. S. M. Sahari. 2021. “Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: A case study in Basra city, Iraq.” J. Storage Mater. 34: 101975. https://doi.org/10.1016/j.est.2020.101975.
Hong, S., J. Lee, J. Moon, and K. Lee. 2018. “Thermal comfort, energy and cost impacts of PMV control considering individual metabolic rate variations in residential building.” Energies 11 (7): 1767. https://doi.org/10.3390/en11071767.
Hoque, S., and B. Weil. 2016. “The relationship between comfort perceptions and academic performance in university classroom buildings.” J. Green Build. 11 (1): 108–117. https://doi.org/10.3992/jgb.11.1.108.1.
Horikiri, K., Y. Yao, and J. Yao. 2015. “Numerical optimisation of thermal comfort improvement for indoor environment with occupants and furniture.” Energy Build. 88: 303–315. https://doi.org/10.1016/j.enbuild.2014.12.015.
Hu, J., Y. He, X. Hao, N. Li, Y. Su, and H. Qu. 2022. “Optimal temperature ranges considering gender differences in thermal comfort, work performance, and sick building syndrome: A winter field study in university classrooms.” Energy Build. 254: 111554. https://doi.org/10.1016/j.enbuild.2021.111554.
Huang, L., and Z. J. Zhai. 2020. “Critical review and quantitative evaluation of indoor thermal comfort indices and models incorporating solar radiation effects.” Energy Build. 224: 110204. https://doi.org/10.1016/j.enbuild.2020.110204.
Hwang, R.-L., and S.-Y. Shu. 2011. “Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control.” Build. Environ. 46 (4): 824–834. https://doi.org/10.1016/j.buildenv.2010.10.009.
Ibrahim, M., L. Bianco, O. Ibrahim, and E. Wurtz. 2018. “Low-emissivity coating coupled with aerogel-based plaster for walls’ internal surface application in buildings: Energy saving potential based on thermal comfort assessment.” J. Build. Eng. 18: 454–466. https://doi.org/10.1016/j.jobe.2018.04.008.
Indraganti, M., and M. A. Humphreys. 2021. “A comparative study of gender differences in thermal comfort and environmental satisfaction in air-conditioned offices in Qatar, India, and Japan.” Build. Environ. 206: 108297. https://doi.org/10.1016/j.buildenv.2021.108297.
Indraganti, M., R. Ooka, H. B. Rijal, and G. S. Brager. 2014. “Adaptive model of thermal comfort for offices in hot and humid climates of India.” Build. Environ. 74: 39–53. https://doi.org/10.1016/j.buildenv.2014.01.002.
ISO. 2005. Ergonomics of the thermal environment–Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO 7730: 2005. Geneva: ISO.
Izadyar, N., W. Miller, B. Rismanchi, and V. Garcia-Hansen. 2020. “A numerical investigation of balcony geometry impact on single-sided natural ventilation and thermal comfort.” Build. Environ. 177: 106847. https://doi.org/10.1016/j.buildenv.2020.106847.
Jamaludin, N., N. I. Mohammed, M. F. Khamidi, and S. N. A. Wahab. 2015. “Thermal comfort of residential building in Malaysia at different micro-climates.” Procedia Social Behav. Sci. 170: 613–623. https://doi.org/10.1016/j.sbspro.2015.01.063.
Jamil, H., M. Alam, J. Sanjayan, and J. Wilson. 2016. “Investigation of PCM as retrofitting option to enhance occupant thermal comfort in a modern residential building.” Energy Build. 133: 217–229. https://doi.org/10.1016/j.enbuild.2016.09.064.
Jazizadeh, F., A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, and M. Orosz. 2014. “User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings.” Energy Build. 70: 398–410. https://doi.org/10.1016/j.enbuild.2013.11.066.
Jazizadeh, F., and W. Jung. 2018. “Personalized thermal comfort inference using RGB video images for distributed HVAC control.” Appl. Energy 220: 829–841. https://doi.org/10.1016/j.apenergy.2018.02.049.
Jiang, J., D. Wang, Y. Liu, Y. Di, and J. Liu. 2021. “A holistic approach to the evaluation of the indoor temperature based on thermal comfort and learning performance.” Build. Environ. 196: 107803. https://doi.org/10.1016/j.buildenv.2021.107803.
Jiang, J., D. Wang, Y. Liu, Y. Xu, and J. Liu. 2018. “A study on pupils’ learning performance and thermal comfort of primary schools in China.” Build. Environ. 134: 102–113. https://doi.org/10.1016/j.buildenv.2018.02.036.
Jin, Y., and N. Zhang. 2021. “Comprehensive assessment of thermal comfort and indoor environment of traditional historic stilt house, a case of dong minority dwelling, China.” Sustainability 13 (17): 9966. https://doi.org/10.3390/su13179966.
Jindal, A. 2019. “Investigation and analysis of thermal comfort in naturally ventilated secondary school classrooms in the composite climate of India.” Archit. Sci. Rev. 62 (6): 466–484. https://doi.org/10.1080/00038628.2019.1653818.
Jing, S., B. Li, M. Tan, and H. Liu. 2013. “Impact of relative humidity on thermal comfort in a warm environment.” Indoor Built Environ. 22 (4): 598–607. https://doi.org/10.1177/1420326X12447614.
Kalmár, F. 2018. “Impact of elevated air velocity on subjective thermal comfort sensation under asymmetric radiation and variable airflow direction.” J. Build. Phys. 42 (2): 173–193. https://doi.org/10.1177/1744259117737783.
Kang, S., D. Ou, and C. M. Mak. 2017. “The impact of indoor environmental quality on work productivity in university open-plan research offices.” Build. Environ. 124: 78–89. https://doi.org/10.1016/j.buildenv.2017.07.003.
Karjalainen, S. 2009. “Thermal comfort and use of thermostats in Finnish homes and offices.” Build. Environ. 44 (6): 1237–1245. https://doi.org/10.1016/j.buildenv.2008.09.002.
Karjalainen, S. 2012. “Thermal comfort and gender: A literature review.” Indoor Air 22 (2): 96–109. https://doi.org/10.1111/j.1600-0668.2011.00747.x.
Karyono, K., B. M. Abdullah, A. J. Cotgrave, and A. Bras. 2020. “The adaptive thermal comfort review from the 1920s, the present, and the future.” Dev. Built Environ. 4: 100032. https://doi.org/10.1016/j.dibe.2020.100032.
Kaushik, A., M. Arif, P. Tumula, and O. J. Ebohon. 2020. “Effect of thermal comfort on occupant productivity in office buildings: Response surface analysis.” Build. Environ. 180: 107021. https://doi.org/10.1016/j.buildenv.2020.107021.
Kavgic, M., D. Mumovic, Z. Stevanovic, and A. Young. 2008. “Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre.” Energy Build. 40 (7): 1334–1343. https://doi.org/10.1016/j.enbuild.2007.12.002.
Kerroumi, N., B. Touati, and J. Virgone. 2020. “Thermal performance analysis of sensible and pcm-integrated thermal insulation layers to improve thermal comfort in building.” Interfacial Phenom. Heat Transfer 8 (1): 67–80. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2020034117.
Kiki, G., C. Kouchadé, A. Houngan, S. J. Zannou-Tchoko, and P. André. 2020. “Evaluation of thermal comfort in an office building in the humid tropical climate of Benin.” Build. Environ. 185: 107277. https://doi.org/10.1016/j.buildenv.2020.107277.
Kim, G., L. Schaefer, T. S. Lim, and J. T. Kim. 2013. “Thermal comfort prediction of an underfloor air distribution system in a large indoor environment.” Energy Build. 64: 323–331. https://doi.org/10.1016/j.enbuild.2013.05.003.
Kim, J., T. Hong, J. Jeong, C. Koo, and K. Jeong. 2016. “An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption.” Appl. Energy 169: 682–695. https://doi.org/10.1016/j.apenergy.2016.02.032.
Kim, J., T. Hong, M. Kong, and K. Jeong. 2020. “Building occupants’ psycho-physiological response to indoor climate and CO2 concentration changes in office buildings.” Build. Environ. 169: 106596. https://doi.org/10.1016/j.buildenv.2019.106596.
Kim, J. W., W. Yang, and H. J. Moon. 2017. “An integrated comfort control with cooling, ventilation, and humidification systems for thermal comfort and low energy consumption.” Sci. Technol. Built Environ. 23 (2): 264–276. https://doi.org/10.1080/23744731.2016.1258294.
Kim, S.-H., Y.-R. Yoon, J.-W. Kim, and H.-J. Moon. 2021a. “Novel integrated and optimal control of indoor environmental devices for thermal comfort using double deep q-network.” Atmosphere 12 (5): 629. https://doi.org/10.3390/atmos12050629.
Kim, Y., Y. Shin, and H. Cho. 2021b. “Influencing factors on thermal comfort and biosignals of occupant-a review.” J. Mech. Sci. Technol. 35 (9): 4201–4224. https://doi.org/10.1007/s12206-021-0832-5.
Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. “The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants.” J. Exposure Sci. Environ. Epidemiol. 11 (3): 231–252. https://doi.org/10.1038/sj.jea.7500165.
Kong, D., H. Liu, Y. Wu, B. Li, S. Wei, and M. Yuan. 2019. “Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation.” Build. Environ. 155: 298–307. https://doi.org/10.1016/j.buildenv.2019.02.039.
Konis, K., S. Blessenohl, N. Kedia, and V. Rahane. 2020. “Trojansense, a participatory sensing framework for occupant-aware management of thermal comfort in campus buildings.” Build. Environ. 169: 106588. https://doi.org/10.1016/j.buildenv.2019.106588.
Kontes, G., G. Giannakis, P. Horn, S. Steiger, and D. Rovas. 2017. “Using thermostats for indoor climate control in office buildings: The effect on thermal comfort.” Energies 10 (9): 1368. https://doi.org/10.3390/en10091368.
Kotopouleas, A., and M. Nikolopoulou. 2016. “Thermal comfort conditions in airport terminals: Indoor or transition spaces?” Build. Environ. 99: 184–199. https://doi.org/10.1016/j.buildenv.2016.01.021.
Kuczyński, T., and A. Staszczuk. 2020. “Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings.” Energy 195: 116984. https://doi.org/10.1016/j.energy.2020.116984.
Kükrer, E., and N. Eskin. 2021. “Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building.” J. Build. Eng. 44: 102697. https://doi.org/10.1016/j.jobe.2021.102697.
Kumar, S., M. K. Singh, R. Kukreja, S. K. Chaurasiya, and V. K. Gupta. 2019. “Comparative study of thermal comfort and adaptive actions for modern and traditional multi-storey naturally ventilated hostel buildings during monsoon season in India.” J. Build. Eng. 23: 90–106. https://doi.org/10.1016/j.jobe.2019.01.020.
Kwag, B. C., J. Park, S. Kim, and G. T. Kim. 2019. “Evaluation of effects of the humidity level-based auto-controlled centralized exhaust ventilation systems on thermal comfort of multi-family residential buildings in South Korea.” Sustainability 11 (17): 4791. https://doi.org/10.3390/su11174791.
Kwak, Y., and J.-H. Huh. 2019. “Management of cooling energy through building controls for thermal comfort and relative performance in an office building.” Sci. Technol. Built Environ. 25 (2): 139–148. https://doi.org/10.1080/23744731.2018.1503033.
Kwok, Y. T., A. K. L. Lai, K. K.-L. Lau, P. W. Chan, Y. Lavafpour, J. C. K. Ho, and E. Y. Y. Ng. 2017. “Thermal comfort and energy performance of public rental housing under typical and near-extreme weather conditions in Hong Kong.” Energy Build. 156: 390–403. https://doi.org/10.1016/j.enbuild.2017.09.067.
Kwon, C. W., K. J. Lee, and S. Cho. 2019. “Numerical study of balancing between indoor building energy and outdoor thermal comfort with a flexible building element.” Sustainability 11 (23): 6654. https://doi.org/10.3390/su11236654.
La Gennusa, M., A. Nucara, M. Pietrafesa, and G. Rizzo. 2007. “A model for managing and evaluating solar radiation for indoor thermal comfort.” Sol. Energy 81 (5): 594–606. https://doi.org/10.1016/j.solener.2006.09.005.
Lakhdari, K., L. Sriti, and B. Painter. 2021. “Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions.” Build. Environ. 204: 108173. https://doi.org/10.1016/j.buildenv.2021.108173.
Lamberti, G., G. Salvadori, F. Leccese, F. Fantozzi, and P. M. Bluyssen. 2021. “Advancement on thermal comfort in educational buildings: Current issues and way forward.” Sustainability 13 (18): 10315. https://doi.org/10.3390/su131810315.
Langevin, J., J. Wen, and P. L. Gurian. 2013. “Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants.” Build. Environ. 69: 206–226. https://doi.org/10.1016/j.buildenv.2013.07.017.
Latha, P. K., Y. Darshana, and V. Venugopal. 2015. “Role of building material in thermal comfort in tropical climates– A review.” J. Build. Eng. 3: 104–113. https://doi.org/10.1016/j.jobe.2015.06.003.
Lau, S. S. Y., J. Zhang, and Y. Tao. 2019. “A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus.” Build. Environ. 148: 579–599. https://doi.org/10.1016/j.buildenv.2018.11.032.
Lebon, M., H. Fellouah, N. Galanis, A. Limane, and N. Guerfala. 2017. “Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: A case study.” Energy Effic. 10 (3): 527–548. https://doi.org/10.1007/s12053-016-9469-0.
Lee, J., and R. K. Strand. 2001. “An analysis of the effect of the building envelope on thermal comfort using the EnergyPlus program.” In Proc., Association of Collegiate Schools of Architecture Technology Conf., 1–8. Austin, TX: Association of Collegiate Schools of Architecture.
Lee, K. H., and S. Schiavo. 2014. “Influence of three dynamic predictive clothing insulation models on building energy use, HVAC sizing and thermal comfort.” Energies 7 (4): 1917–1934. https://doi.org/10.3390/en7041917.
Lei, Z., C. Liu, L. Wang, and N. Li. 2017. “Effect of natural ventilation on indoor air quality and thermal comfort in dormitory during winter.” Build. Environ. 125: 240–247. https://doi.org/10.1016/j.buildenv.2017.08.051.
Leung, C., and H. Ge. 2013. “Sleep thermal comfort and the energy saving potential due to reduced indoor operative temperature during sleep.” Build. Environ. 59: 91–98. https://doi.org/10.1016/j.buildenv.2012.08.010.
Li, B., R. Yao, Q. Wang, and Y. Pan. 2014. “An introduction to the Chinese Evaluation Standard for the indoor thermal environment.” Energy Build. 82: 27–36. https://doi.org/10.1016/j.enbuild.2014.06.032.
Li, H., W. L. Lee, and J. Jia. 2016. “Applying a novel extra-low temperature dedicated outdoor air system in office buildings for energy efficiency and thermal comfort.” Energy Convers. Manage. 121: 162–173. https://doi.org/10.1016/j.enconman.2016.05.036.
Li, N., W. Yu, and B. Li. 2012. “Assessing adaptive thermal comfort using artificial neural networks in naturally-ventilated buildings.” Int. J. Vent. 11 (2): 205–218. https://doi.org/10.1080/14733315.2012.11683982.
Liao, F.-C., M.-J. Cheng, and R.-L. Hwang. 2015. “Influence of urban microclimate on air-conditioning energy needs and indoor thermal comfort in houses.” Adv. Meteorol. 2015: 1–9. https://doi.org/10.1155/2015/585623.
Liping, W., and W. N. Hien. 2007. “Applying natural ventilation for thermal comfort in residential buildings in Singapore.” Archit. Sci. Rev. 50 (3): 224–233.
Liu, J., S. Zhu, M. K. Kim, and J. Srebric. 2019. “A review of CFD analysis methods for personalized ventilation (PV) in indoor built environments.” Sustainability 11 (15): 4166. https://doi.org/10.3390/su11154166.
Liu, Z., K. Cheng, H. Li, G. Cao, D. Wu, and Y. Shi. 2018. “Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: A combined experimental and neural network modeling study.” Environ. Sci. Pollut. Res. 25 (4): 3510–3517. https://doi.org/10.1007/s11356-017-0708-5.
Lomas, K. J., and R. Giridharan. 2012. “Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free-running buildings: A case-study of hospital wards.” Build. Environ. 55: 57–72. https://doi.org/10.1016/j.buildenv.2011.12.006.
Lotfabadi, P., and P. Hançer. 2019. “A comparative study of traditional and contemporary building envelope construction techniques in terms of thermal comfort and energy efficiency in hot and humid climates.” Sustainability 11 (13): 3582. https://doi.org/10.3390/su11133582.
Luo, M., Y. Hong, and J. Pantelic. 2021. “Determining building natural ventilation potential via IoT-based air quality sensors.” Front. Environ. Sci. 9: 144.
Luo, J., M. M. Joybari, K. Panchabikesan, F. Haghighat, A. Moreau, and M. Robichaud. 2020. “Parametric study to maximize the peak load shifting and thermal comfort in residential buildings located in cold climates.” J. Storage Mater. 30: 101560. https://doi.org/10.1016/j.est.2020.101560.
Lutzenhiser, L. 1993. “Social and behavioral aspects of energy use.” Annu. Rev. Energy Env. 18 (1): 247–289. https://doi.org/10.1146/annurev.eg.18.110193.001335.
Ma, F., C. Zhan, X. Xu, and G. Li. 2020. “Winter thermal comfort and perceived air quality: A case study of primary schools in severe cold regions in China.” Energies 13 (22): 5958. https://doi.org/10.3390/en13225958.
Ma, G., Y. Liu, and S. Shang. 2019. “A building information model (BIM) and artificial neural network (ANN) based system for personal thermal comfort evaluation and energy efficient design of interior space.” Sustainability 11 (18): 4972. https://doi.org/10.3390/su11184972.
Ma, N., D. Aviv, H. Guo, and W. W. Braham. 2021. “Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality.” Renewable Sustainable Energy Rev. 135: 110436. https://doi.org/10.1016/j.rser.2020.110436.
Mabdeh, S., T. A. Radaideh, and M. Hiyari. 2021. “Enhancing thermal comfort of residential buildings through dual functional passive system (Solar-wall).” J. Green Build. 16 (1): 139–161. https://doi.org/10.3992/jgb.16.1.139.
Macpherson, R. K. 1962. “The assessment of the thermal environment. A review.” Br. J. Ind. Med. 19 (3): 151–164.
Madsen, T. L., and B. Saxhof. 1980. “Unconventional method for reduction of the energy consumption for heating of buildings.” In Proc., 2nd Int. CIB Symp. on Energy Conservation in the Built Environment, 623–633. Lyngby, Denmark: Dept. of Civil Engineering, Technical Univ. of Denmark.
Mahar, W. A., G. Verbeeck, M. K. Singh, and S. Attia. 2019. “An investigation of thermal comfort of houses in dry and semi-arid climates of Quetta, Pakistan.” Sustainability 11 (19): 5203. https://doi.org/10.3390/su11195203.
Maiti, R. 2014. “PMV model is insufficient to capture subjective thermal response from Indians.” Int. J. Ind. Ergon. 44 (3): 349–361. https://doi.org/10.1016/j.ergon.2014.01.005.
Mao, N., D. Pan, Z. Li, Y. Xu, M. Song, and S. Deng. 2017. “A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort.” Appl. Energy 192: 213–221. https://doi.org/10.1016/j.apenergy.2017.02.027.
Mardiana-Idayu, A., and S. B. Riffat. 2012. “Review on heat recovery technologies for building applications.” Renewable Sustainable Energy Rev. 16 (2): 1241–1255. https://doi.org/10.1016/j.rser.2011.09.026.
Marincic, I., J. M. Ochoa, and J. A. Del Río. 2012. “Adaptive thermal comfort considering temperature and relative humidity.” Archit. City Environ. 20: 26–46.
Martínez, F. J. R., M. A. Chicote, A. V. Peñalver, A. T. Gónzalez, and E. V. Gómez. 2015. “Indoor air quality and thermal comfort evaluation in a Spanish modern low-energy office with thermally activated building systems.” Sci. Technol. Built Environ. 21 (8): 1091–1099. https://doi.org/10.1080/23744731.2015.1056655.
Martinez-Molina, A., P. Boarin, I. Tort-Ausina, and J.-L. Vivancos. 2017. “Post-occupancy evaluation of a historic primary school in Spain: Comparing PMV, TSV and PD for teachers’ and pupils’ thermal comfort.” Build. Environ. 117: 248–259. https://doi.org/10.1016/j.buildenv.2017.03.010.
Martinopoulos, G., A. Serasidou, P. Antoniadou, and A. M. Papadopoulos. 2018. “Building integrated shading and building applied photovoltaic system assessment in the energy performance and thermal comfort of office buildings.” Sustainability 10 (12): 4670. https://doi.org/10.3390/su10124670.
Medjelekh, D., L. Ulmet, S. Abdou, and F. Dubois. 2016. “A field study of thermal and hygric inertia and its effects on indoor thermal comfort: Characterization of travertine stone envelope.” Build. Environ. 106: 57–77. https://doi.org/10.1016/j.buildenv.2016.06.010.
Méndez Echenagucia, T., A. Capozzoli, Y. Cascone, and M. Sassone. 2015. “The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis.” Appl. Energy 154: 577–591. https://doi.org/10.1016/j.apenergy.2015.04.090.
Mirrahimi, S., M. F. Mohamed, L. C. Haw, N. L. N. Ibrahim, W. F. M. Yusoff, and A. Aflaki. 2016. “The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate.” Renewable Sustainable Energy Rev. 53: 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055.
Mishra, A. K., and M. Ramgopal. 2013. “Field studies on human thermal comfort—An overview.” Build. Environ. 64: 94–106. https://doi.org/10.1016/j.buildenv.2013.02.015.
Moon, J. W., and S. K. Jung. 2016. “Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings.” Appl. Therm. Eng. 103: 1135–1144. https://doi.org/10.1016/j.applthermaleng.2016.05.002.
Mora, R., and R. Bean. 2018. “Thermal comfort and energy analyses of a window retrofit with dynamic glazing.” ASHRAE J. 60 (12): 32–43.
Morgan, C., and R. de Dear. 2003. “Weather, clothing and thermal adaptation to indoor climate.” Clim. Res. 24 (3): 267–284. https://doi.org/10.3354/cr024267.
Mousa, W. A. Y., W. Lang, and T. Auer. 2017. “Assessment of the impact of window screens on indoor thermal comfort and energy efficiency in a naturally ventilated courtyard house.” Archit. Sci. Rev. 60 (5): 382–394. https://doi.org/10.1080/00038628.2017.1329134.
Mui, K. W., T. W. Tsang, and L. T. Wong. 2020. “Bayesian updates for indoor thermal comfort models.” J. Build. Eng. 29: 101117. https://doi.org/10.1016/j.jobe.2019.101117.
Muñoz-González, C. M., A. L. León-Rodríguez, and J. Navarro-Casas. 2016. “Air conditioning and passive environmental techniques in historic churches in Mediterranean climate. A proposed method to assess damage risk and thermal comfort pre-intervention, simulation-based.” Energy Build. 130: 567–577. https://doi.org/10.1016/j.enbuild.2016.08.078.
Muñoz-González, C. M., A. L. León-Rodríguez, R. Suárez Medina, and J. Ruiz Jaramillo. 2020. “Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings.” Appl. Energy 276: 115483. https://doi.org/10.1016/j.apenergy.2020.115483.
Mustapa, M. S., S. A. Zaki, H. B. Rijal, A. Hagishima, and M. S. M. Ali. 2016. “Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer.” Build. Environ. 105: 332–342. https://doi.org/10.1016/j.buildenv.2016.06.014.
Naboni, E., D. S. H. Lee, and K. Fabbri. 2017. “Thermal comfort-CFD maps for architectural interior design.” Procedia Eng. 180: 110–117. https://doi.org/10.1016/j.proeng.2017.04.170.
Nada, S. A., W. G. Alshaer, and R. M. Saleh. 2019. “Thermal characteristics and energy saving of charging/discharging processes of PCM in air free cooling with minimal temperature differences.” Alexandria Eng. J. 58 (4): 1175–1190. https://doi.org/10.1016/j.aej.2019.10.002.
Nalimov, V. V., and Z. M. Mul’chenko. 1971. Measurement of science: Study of the development of science as an information process. Washington, DC: Foreign Technology Division.
Nghana, B., and F. Tariku. 2016. “Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate.” Build. Environ. 99: 221–238. https://doi.org/10.1016/j.buildenv.2016.01.023.
Nguyen, A. T., and S. Reiter. 2014. “Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria.” J. Build. Perform. Simul. 7 (1): 68–81. https://doi.org/10.1080/19401493.2013.770067.
Nicol, F., and M. Humphreys. 2010. “Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251.” Build. Environ. 45 (1): 11–17. https://doi.org/10.1016/j.buildenv.2008.12.013.
Nicol, J. F., and M. A. Humphreys. 2002. “Adaptive thermal comfort and sustainable thermal standards for buildings.” Energy Build. 34 (6): 563–572. https://doi.org/10.1016/S0378-7788(02)00006-3.
Nie, J., Y. Pang, C. Wang, H. Zhang, and K. Yin. 2021. “Theoretical study on the relationship of building thermal insulation with indoor thermal comfort based on APMV index and energy consumption of rural residential buildings.” Appl. Sci. 11 (18): 8565. https://doi.org/10.3390/app11188565.
Nikolaou, T., I. Skias, D. Kolokotsa, and G. Stavrakakis. 2009. “Virtual Building dataset for energy and indoor thermal comfort benchmarking of office buildings in Greece.” Energy Build. 41 (12): 1409–1416. https://doi.org/10.1016/j.enbuild.2009.08.011.
Oh, S., and S. Song. 2021. “Detailed analysis of thermal comfort and indoor air quality using real-time multiple environmental monitoring data for a childcare center.” Energies 14 (3): 643. https://doi.org/10.3390/en14030643.
Olesen, B. W., and G. S. Brager. 2004. “A better way to predict comfort.” ASHRAE J. 46 (8): 20–28.
Olesen, B. W., and K. C. Parsons. 2002. “Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730.” Energy Build. 34 (6): 537–548. https://doi.org/10.1016/S0378-7788(02)00004-X.
Omrani, S., V. Garcia-Hansen, B. R. Capra, and R. Drogemuller. 2017. “Effect of natural ventilation mode on thermal comfort and ventilation performance: Full-scale measurement.” Energy Build. 156: 1–16. https://doi.org/10.1016/j.enbuild.2017.09.061.
Orosa, J. A., and A. C. Oliveira. 2011. “A new thermal comfort approach comparing adaptive and PMV models.” Renewable Energy 36 (3): 951–956. https://doi.org/10.1016/j.renene.2010.09.013.
Ortega Del Rosario, M. D. L. Á., M. Chen Austin, D. Bruneau, J.-P. Nadeau, P. Sébastian, and D. Jaupard. 2021. “Operation assessment of an air-PCM unit for summer thermal comfort in a naturally ventilated building.” Archit. Sci. Rev. 64 (1–2): 37–46. https://doi.org/10.1080/00038628.2020.1794782.
Ozarisoy, B., and H. Altan. 2021. “Regression forecasting of ‘neutral’ adaptive thermal comfort: A field study investigation in the south-eastern Mediterranean climate of Cyprus.” Build. Environ. 202: 108013. https://doi.org/10.1016/j.buildenv.2021.108013.
Palladino, D., I. Nardi, and C. Buratti. 2020. “Artificial neural network for the thermal comfort index prediction: Development of a new simplified algorithm.” Energies 13 (17): 4500. https://doi.org/10.3390/en13174500.
Panraluk, C., and A. Sreshthaputra. 2020. “Developing guidelines for thermal comfort and energy saving during hot season of multipurpose senior centers in Thailand.” Sustainability 12 (1): 170. https://doi.org/10.3390/su12010170.
Parkinson, T., and R. Dear. 2015. “Thermal pleasure in built environments: Physiology of alliesthesia.” Build. Res. Inf. 43 (3): 288–301. https://doi.org/10.1080/09613218.2015.989662.
Pastore, L., R. Corrao, and P. K. Heiselberg. 2017. “The effects of vegetation on indoor thermal comfort: The application of a multi-scale simulation methodology on a residential neighborhood renovation case study.” Energy Build. 146: 1–11. https://doi.org/10.1016/j.enbuild.2017.04.022.
Pérez-Lombard, L., J. Ortiz, and C. Pout. 2008. “A review on buildings energy consumption information.” Energy Build. 40 (3): 394–398. https://doi.org/10.1016/j.enbuild.2007.03.007.
Petersen, S., A. J. Momme, and C. A. Hviid. 2014. “A simple tool to evaluate the effect of the urban canyon on daylight level and energy demand in the early stages of building design.” Sol. Energy 108: 61–68. https://doi.org/10.1016/j.solener.2014.06.026.
Piasecki, M., M. Fedorczak-Cisak, M. Furtak, and J. Biskupski. 2019. “Experimental confirmation of the reliability of fanger’s thermal comfort model—Case study of a Near-Zero Energy Building (NZEB) office building.” Sustainability 11 (9): 2461. https://doi.org/10.3390/su11092461.
Potočnik, P., B. Vidrih, A. Kitanovski, and E. Govekar. 2018. “Analysis and optimization of thermal comfort in residential buildings by means of a weather-controlled air-to-water heat pump.” Build. Environ. 140: 68–79. https://doi.org/10.1016/j.buildenv.2018.05.044.
Qays Oleiwi, M., M. Farid Mohamed, M. Khairul Azhar Mat Sulaiman, A. Irfan Che-Ani, and S. N. Raman. 2019. “Thermal environment accuracy investigation of Integrated Environmental Solutions-Virtual Environment (IES-VE) software for double-story house simulation in Malaysia.” J. Eng. Appl. Sci. 14 (11): 3659–3665. https://doi.org/10.36478/jeasci.2019.3659.3665.
Qu, K., X. Chen, Y. Wang, J. Calautit, S. Riffat, and X. Cui. 2021a. “Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK.” Energy 220: 119646. https://doi.org/10.1016/j.energy.2020.119646.
Qu, Y., D. Zhou, F. Xue, and L. Cui. 2021b. “Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer.” Energy Build. 241: 110966. https://doi.org/10.1016/j.enbuild.2021.110966.
Rana, K. 2021. “Towards passive design strategies for improving thermal comfort performance in a naturally ventilated residence.” J. Sustainable Archit. Civ. Eng. 29 (2): 150–174. https://doi.org/10.5755/j01.sace.29.2.29256.
Rangaswamy, D. R., and K. Ramamurthy. 2021. “Evaluation of eight thermal comfort indices based on perception survey for a Hot-humid climate through a naturally ventilated apartment.” J. Archit. Eng. 27 (4): 04021041. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000508.
Rawal, R., M. Schweiker, O. B. Kazanci, V. Vardhan, Q. Jin, and L. Duanmu. 2020. “Personal comfort systems: A review on comfort, energy, and economics.” Energy Build. 214: 109858. https://doi.org/10.1016/j.enbuild.2020.109858.
Requena-Ruiz, I. 2016. “Thermal comfort in twentieth-century architectural heritage: Two houses of Le Corbusier and André Wogenscky.” Front. Archit. Res. 5 (2): 157–170. https://doi.org/10.1016/j.foar.2016.02.001.
Rijal, H. B., M. A. Humphreys, and J. F. Nicol. 2017. “Towards an adaptive model for thermal comfort in Japanese offices.” Build. Res. Inf. 45 (7): 717–729. https://doi.org/10.1080/09613218.2017.1288450.
Rijal, H. B., P. Tuohy, M. A. Humphreys, J. F. Nicol, A. Samuel, and J. Clarke. 2007. “Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings.” Energy Build. 39 (7): 823–836. https://doi.org/10.1016/j.enbuild.2007.02.003.
Rijal, H. B., K. Yoshida, M. A. Humphreys, and J. F. Nicol. 2021. “Development of an adaptive thermal comfort model for energy-saving building design in Japan.” Archit. Sci. Rev. 64 (1–2): 109–122. https://doi.org/10.1080/00038628.2020.1747045.
Robledo-Fava, R., M. C. Hernández-Luna, P. Fernández-de-Córdoba, H. Michinel, S. Zaragoza, A. Castillo-Guzman, and R. Selvas-Aguilar. 2019. “Analysis of the influence subjective human parameters in the calculation of thermal comfort and energy consumption of buildings.” Energies 12 (8): 1531. https://doi.org/10.3390/en12081531.
Rodríguez, C. M., M. C. Coronado, and J. M. Medina. 2021. “Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia.” Build. Environ. 194: 107682. https://doi.org/10.1016/j.buildenv.2021.107682.
Rupp, R. F., O. B. Kazanci, and J. Toftum. 2021. “Investigating current trends in clothing insulation using a global thermal comfort database.” Energy Build. 252: 111431. https://doi.org/10.1016/j.enbuild.2021.111431.
Rupp, R. F., N. G. Vásquez, and R. Lamberts. 2015. “A review of human thermal comfort in the built environment.” Energy Build. 105: 178–205. https://doi.org/10.1016/j.enbuild.2015.07.047.
Ruz, M. L., J. Garrido, and F. Vázquez. 2018. “Educational tool for the learning of thermal comfort control based on PMV-PPD indices.” Comput. Appl. Eng. Educ. 26 (4): 906–917. https://doi.org/10.1002/cae.21934.
Saber, E. M., R. Iyengar, M. Mast, F. Meggers, K. W. Tham, and H. Leibundgut. 2014. “Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics.” Build. Environ. 82: 361–370. https://doi.org/10.1016/j.buildenv.2014.09.001.
Sadeghi, M., G. Wood, B. Samali, and R. de Dear. 2020. “Effects of urban context on the indoor thermal comfort performance of windcatchers in a residential setting.” Energy Build. 219: 110010. https://doi.org/10.1016/j.enbuild.2020.110010.
Sage-Lauck, J. S., and D. J. Sailor. 2014. “Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building.” Energy Build. 79: 32–40. https://doi.org/10.1016/j.enbuild.2014.04.028.
Saif, J., A. Wright, S. Khattak, and K. Elfadli. 2021. “Keeping cool in the desert: Using wind catchers for improved thermal comfort and indoor air quality at half the energy.” Buildings 11 (3): 100. https://doi.org/10.3390/buildings11030100.
Salehi, A., R. Fayaz, M. Bozorgi, S. Asadi, V. Costanzo, N. Imani, and F. Nocera. 2019. “Investigation of thermal comfort efficacy of solar chimneys under different climates and operation time periods.” Energy Build. 205: 109528. https://doi.org/10.1016/j.enbuild.2019.109528.
Samani, P., V. Leal, A. Mendes, and N. Correia. 2016. “Comparison of passive cooling techniques in improving thermal comfort of occupants of a pre-fabricated building.” Energy Build. 120: 30–44. https://doi.org/10.1016/j.enbuild.2016.03.055.
Sansaniwal, S. K., P. Tewari, S. Kumar, S. Mathur, and A. J. Mathur. 2020. “Impact assessment of air velocity on thermal comfort in composite climate of India.” Sci. Technol. Built Environ. 26 (9): 1301–1320. https://doi.org/10.1080/23744731.2020.1793640.
Schellen, L., M. G. L. C. Loomans, B. R. M. Kingma, M. H. de Wit, A. J. H. Frijns, and W. D. van Marken Lichtenbelt. 2013. “The use of a thermophysiological model in the built environment to predict thermal sensation: Coupling with the indoor environment and thermal sensation.” Build. Environ. 59: 10–22. https://doi.org/10.1016/j.buildenv.2012.07.010.
Shaeri, J., M. Yaghoubi, and A. Habibi. 2018. “Influence of iwans on the thermal comfort of talar rooms in the traditional houses: A study in Shiraz, Iran.” Buildings 8 (6): 81. https://doi.org/10.3390/buildings8060081.
Shahinmoghadam, M., W. Natephra, and A. Motamedi. 2021. “BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures.” Build. Environ. 199: 107905. https://doi.org/10.1016/j.buildenv.2021.107905.
Shaikh, P. H., N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and T. Ibrahim. 2014. “A review on optimized control systems for building energy and comfort management of smart sustainable buildings.” Renewable Sustainable Energy Rev. 34: 409–429. https://doi.org/10.1016/j.rser.2014.03.027.
Shan, X., and W.-Z. Lu. 2021. “An integrated approach to evaluate thermal comfort in air-conditioned large-space office.” Sci. Technol. Built Environ. 27 (4): 436–450. https://doi.org/10.1080/23744731.2020.1796420.
Shao, T., and H. Jin. 2020. “A field investigation on the winter thermal comfort of residents in rural houses at different latitudes of northeast severe cold regions, China.” J. Build. Eng. 32: 101476. https://doi.org/10.1016/j.jobe.2020.101476.
Sharma, A., A. Kumar, and K. S. Kulkarni. 2021. “Thermal comfort studies for the naturally ventilated built environments in Indian subcontinent: A review.” J. Build. Eng. 44: 103242. https://doi.org/10.1016/j.jobe.2021.103242.
Shastry, V., M. Mani, and R. Tenorio. 2014. “Impacts of modern transitions on thermal comfort in vernacular dwellings in warm-humid climate of Sugganahalli (India).” Indoor Built Environ. 23 (4): 543–564. https://doi.org/10.1177/1420326X12461801.
Shastry, V., M. Mani, and R. Tenorio. 2016. “Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India).” Archit. Sci. Rev. 59 (1): 12–26. https://doi.org/10.1080/00038628.2014.971701.
Shrestha, M., H. B. Rijal, G. Kayo, and M. Shukuya. 2021. “A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal.” Build. Environ. 190: 107523. https://doi.org/10.1016/j.buildenv.2020.107523.
Simson, R., J. Kurnitski, and M. Maivel. 2017. “Summer thermal comfort: Compliance assessment and overheating prevention in new apartment buildings in Estonia.” J. Build. Perform. Simul. 10 (4): 378–391. https://doi.org/10.1080/19401493.2016.1248488.
Singh, M. K., S. Kumar, R. Ooka, H. B. Rijal, G. Gupta, and A. Kumar. 2018. “Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India.” Build. Environ. 128: 287–304. https://doi.org/10.1016/j.buildenv.2017.11.031.
Socaciu, L., O. Giurgiu, D. Banyai, and M. Simion. 2016. “PCM selection using AHP method to maintain thermal comfort of the vehicle occupants.” Energy Procedia 85: 489–497. https://doi.org/10.1016/j.egypro.2015.12.232.
Sokkar, R., and H. Z. Alibaba. 2020. “Thermal comfort improvement for atrium building with double-skin skylight in the Mediterranean climate.” Sustainability 12 (6): 2253. https://doi.org/10.3390/su12062253.
Song, W., F. Wang, and F. Wei. 2016. “Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment.” Build. Environ. 100: 92–101. https://doi.org/10.1016/j.buildenv.2016.02.009.
Spentzou, E., M. J. Cook, and S. Emmitt. 2018. “Natural ventilation strategies for indoor thermal comfort in Mediterranean apartments.” Build. Simul. 11 (1): 175–191. https://doi.org/10.1007/s12273-017-0380-1.
Staveckis, A., and A. Borodinecs. 2021. “Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings.” Energy Build. 235: 110738. https://doi.org/10.1016/j.enbuild.2021.110738.
Stavrakakis, G. M., M. K. Koukou, M. G. Vrachopoulos, and N. C. Markatos. 2008. “Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation.” Energy Build. 40 (9): 1666–1681. https://doi.org/10.1016/j.enbuild.2008.02.022.
Stazi, F., S. Marinelli, C. Di Perna, and P. Munafò. 2014. “Comparison on solar shadings: Monitoring of the thermo-physical behaviour, assessment of the energy saving, thermal comfort, natural lighting and environmental impact.” Sol. Energy 105: 512–528. https://doi.org/10.1016/j.solener.2014.04.005.
Stazi, F., E. Tomassoni, and C. Di Perna. 2017. “Super-insulated wooden envelopes in Mediterranean climate: Summer overheating, thermal comfort optimization, environmental impact on an Italian case study.” Energy Build. 138: 716–732. https://doi.org/10.1016/j.enbuild.2016.12.042.
Sung, W.-T., and S.-J. Hsiao. 2020. “The application of thermal comfort control based on Smart House System of IoT.” Measurement 149: 106997. https://doi.org/10.1016/j.measurement.2019.106997.
Tam, V. W. Y., L. Almeida, and K. Le. 2018. “Energy-related occupant behaviour and its implications in energy use: A chronological review.” Sustainability 10 (8): 2635. https://doi.org/10.3390/su10082635.
Tang, R., and S. Wang. 2019. “Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids.” Appl. Energy 242: 873–882. https://doi.org/10.1016/j.apenergy.2019.03.038.
Tarantini, M., G. Pernigotto, and A. Gasparella. 2017. “A co-citation analysis on thermal comfort and productivity aspects in production and office buildings.” Buildings 7 (2): 36. https://doi.org/10.3390/buildings7020036.
Tartarini, F., S. Schiavon, T. Cheung, and T. Hoyt. 2020. “CBE thermal comfort tool: Online tool for thermal comfort calculations and visualizations.” SoftwareX 12: 100563. https://doi.org/10.1016/j.softx.2020.100563.
Taylor, M., N. C. Brown, and D. Rim. 2021. “Optimizing thermal comfort and energy use for learning environments.” Energy Build. 248: 111181. https://doi.org/10.1016/j.enbuild.2021.111181.
Tewari, P., S. Mathur, J. Mathur, S. Kumar, and V. Loftness. 2019. “Field study on indoor thermal comfort of office buildings using evaporative cooling in the composite climate of India.” Energy Build. 199: 145–163. https://doi.org/10.1016/j.enbuild.2019.06.049.
Theluer, F., A. Cordier, and F. Monchoux. 1994. “The analysis of thermal comfort requirements through the simulation of an occupied building.” Ergonomics 37 (5): 817–825. https://doi.org/10.1080/00140139408963691.
Tuck, N. W., S. A. Zaki, A. Hagishima, H. B. Rijal, and F. Yakub. 2020. “Affordable retrofitting methods to achieve thermal comfort for a terrace house in Malaysia with a hot–humid climate.” Energy Build. 223: 110072. https://doi.org/10.1016/j.enbuild.2020.110072.
Tuniki, H. P., A. Jurelionis, and P. Fokaides. 2021. “A review on the approaches in analysing energy-related occupant behaviour research.” J. Build. Eng. 40: 102630. https://doi.org/10.1016/j.jobe.2021.102630.
Turhan, C., and G. Gokcen Akkurt. 2018. “Assessment of thermal comfort preferences in Mediterranean climate: A university office building case.” Therm. Sci. 22 (5): 2177–2187. https://doi.org/10.2298/TSCI171231267T.
Utkucu, D., and H. Sözer. 2020. “Interoperability and data exchange within BIM platform to evaluate building energy performance and indoor comfort.” Autom. Constr. 116: 103225. https://doi.org/10.1016/j.autcon.2020.103225.
Valinejadshoubi, M., O. Moselhi, A. Bagchi, and A. Salem. 2021. “Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings.” Sustainable Cities Soc. 66: 102602. https://doi.org/10.1016/j.scs.2020.102602.
Van Craenendonck, S., L. Lauriks, C. Vuye, and J. Kampen. 2019. “Local effects on thermal comfort: Experimental investigation of small-area radiant cooling and low-speed draft caused by improperly retrofitted construction joints.” Build. Environ. 147: 188–198. https://doi.org/10.1016/j.buildenv.2018.10.021.
van Eck, N. J., and L. Waltman. 2013. {VOSviewer} manual. Leiden, Netherlands: Univeristeit Leiden.
van Hoof, J. 2008. “Forty years of Fanger’s model of thermal comfort: Comfort for all?” Indoor Air 18 (3): 182–201. https://doi.org/10.1111/j.1600-0668.2007.00516.x.
van Hooff, T., B. Blocken, and Y. Tominaga. 2017. “On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments.” Build. Environ. 114: 148–165. https://doi.org/10.1016/j.buildenv.2016.12.019.
Vanhoutteghem, L., G. C. J. Skarning, C. A. Hviid, and S. Svendsen. 2015. “Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses.” Energy Build. 102: 149–156. https://doi.org/10.1016/j.enbuild.2015.05.018.
Vella, R. C., F. J. R. Martinez, C. Yousif, and L. Camilleri. 2021. “Thermal comfort in places of worship within a Mediterranean climate.” Sustainability 13 (13): 7233. https://doi.org/10.3390/su13137233.
Vella, R. C., F. J. R. Martinez, C. Yousif, and D. Gatt. 2020. “A study of thermal comfort in naturally ventilated churches in a Mediterranean climate.” Energy Build. 213: 109843. https://doi.org/10.1016/j.enbuild.2020.109843.
Vellei, M., M. Herrera, D. Fosas, and S. Natarajan. 2017. “The influence of relative humidity on adaptive thermal comfort.” Build. Environ. 124: 171–185. https://doi.org/10.1016/j.buildenv.2017.08.005.
Veselý, M., and W. Zeiler. 2014. “Personalized conditioning and its impact on thermal comfort and energy performance - A review.” Renewable Sustainable Energy Rev. 34: 401–408. https://doi.org/10.1016/j.rser.2014.03.024.
Vitale, V., and G. Salerno. 2017. “A numerical prediction of the passive cooling effects on thermal comfort for a historical building in Rome.” Energy Build. 157: 1–10. https://doi.org/10.1016/j.enbuild.2017.06.049.
Wang, C., F. Zhang, J. Wang, J. K. Doyle, P. A. Hancock, C. M. Mak, and S. Liu. 2021a. “How indoor environmental quality affects occupants’ cognitive functions: A systematic review.” Build. Environ. 193: 107647. https://doi.org/10.1016/j.buildenv.2021.107647.
Wang, D., G. Chen, C. Song, Y. Liu, W. He, T. Zeng, and J. Liu. 2019a. “Experimental study on coupling effect of indoor air temperature and radiant temperature on human thermal comfort in non-uniform thermal environment.” Build. Environ. 165: 106387. https://doi.org/10.1016/j.buildenv.2019.106387.
Wang, F., Z. Kang, and J. Zhou. 2019b. “Model validation and parametric study on a personal heating clothing system (PHCS) to help occupants attain thermal comfort in unheated buildings.” Build. Environ. 162: 106308. https://doi.org/10.1016/j.buildenv.2019.106308.
Wang, F.-J., M.-C. Lee, T.-B. Chang, Y.-S. Chen, and R.-C. Jung. 2014. “Improving indoor air quality and thermal comfort by total heat exchanger for an office building in hot and humid climate.” HVAC&R Res. 20 (7): 731–737. https://doi.org/10.1080/10789669.2014.948362.
Wang, L., and N. H. Wong. 2009. “Coupled simulations for naturally ventilated rooms between building simulation (BS) and computational fluid dynamics (CFD) for better prediction of indoor thermal environment.” Build. Environ. 44 (1): 95–112. https://doi.org/10.1016/j.buildenv.2008.01.015.
Wang, R., S. Lu, W. Feng, X. Zhai, and X. Li. 2020. “Sustainable framework for buildings in cold regions of China considering life cycle cost and environmental impact as well as thermal comfort.” Energy Rep. 6: 3036–3050. https://doi.org/10.1016/j.egyr.2020.10.023.
Wang, W., Z. Tian, and Y. Ding. 2013. “Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall.” Energy Build. 64: 218–223. https://doi.org/10.1016/j.enbuild.2013.05.007.
Wang, X., L. Yang, S. Gao, S. Zhao, and Y. Zhai. 2021b. “Thermal comfort in naturally ventilated university classrooms: A seasonal field study in Xi’an, China.” Energy Build. 247: 111126. https://doi.org/10.1016/j.enbuild.2021.111126.
Wang, Y., and H. Fukuda. 2019. “The influence of insulation styles on the building energy consumption and indoor thermal comfort of multi-family residences.” Sustainability 11 (1): 266. https://doi.org/10.3390/su11010266.
Wang, Y., J. Kuckelkorn, F.-Y. Zhao, D. Liu, A. Kirschbaum, and J.-L. Zhang. 2015. “Evaluation on classroom thermal comfort and energy performance of passive school building by optimizing HVAC control systems.” Build. Environ. 89: 86–106. https://doi.org/10.1016/j.buildenv.2015.02.023.
Wang, Z., L. Zhang, J. Zhao, and Y. He. 2010. “Thermal comfort for naturally ventilated residential buildings in Harbin.” Energy Build. 42 (12): 2406–2415. https://doi.org/10.1016/j.enbuild.2010.08.010.
Wargocki, P., J. A. Porras-Salazar, and S. Contreras-Espinoza. 2019. “The relationship between classroom temperature and children’s performance in school.” Build. Environ. 157: 197–204. https://doi.org/10.1016/j.buildenv.2019.04.046.
Wargocki, P., D. P. Wyon, Y. K. Baik, G. Clausen, and P. O. Fanger. 1999. “Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads.” Indoor Air 9 (3): 165–179. https://doi.org/10.1111/j.1600-0668.1999.t01-1-00003.x.
Wei, Y., H. Yu, S. Pan, L. Xia, J. Xie, X. Wang, J. Wu, W. Zhang, and Q. Li. 2019. “Comparison of different window behavior modeling approaches during transition season in Beijing, China.” Build. Environ. 157: 1–15. https://doi.org/10.1016/j.buildenv.2019.04.040.
Wong, N. H., H. Feriadi, P. Y. Lim, K. W. Tham, C. Sekhar, and K. W. Cheong. 2002. “Thermal comfort evaluation of naturally ventilated public housing in Singapore.” Build. Environ. 37 (12): 1267–1277. https://doi.org/10.1016/S0360-1323(01)00103-2.
Wong, N. H., J. Song, G. H. Tan, B. T. Komari, and D. K. W. Cheong. 2003. “Natural ventilation and thermal comfort investigation of a hawker center in Singapore.” Build. Environ. 38 (11): 1335–1343. https://doi.org/10.1016/S0360-1323(03)00112-4.
Woo Oh, H. 2012. Applied computational fluid dynamics, 1–19. Mech. Eng. Ser. London: IntechOpen.
Xie, J., H. Li, C. Li, J. Zhang, and M. Luo. 2020. “Review on occupant-centric thermal comfort sensing, predicting, and controlling.” Energy Build. 226: 110392. https://doi.org/10.1016/j.enbuild.2020.110392.
Xu, C., and S. Li. 2022. “Analysis of the CPMV index for evaluating indoor thermal comfort in southern China in summer, a case study in Nanjing.” Front. Archit. Res. 11: 103–113. [Preprint]. https://doi.org/10.1016/j.foar.2021.08.005.
Xu, C., S. Li, and X. Zhang. 2019. “Application of the CPMV index to evaluating indoor thermal comfort in winter: Case study on an office building in Beijing.” Build. Environ. 162: 106295. https://doi.org/10.1016/j.buildenv.2019.106295.
Xu, C., S. Li, and X. Zhang. 2020. “Energy flexibility for heating and cooling in traditional Chinese dwellings based on adaptive thermal comfort: A case study in Nanjing.” Build. Environ. 179: 106952.
Xu, X. G., K. Y. Sit, S. M. Deng, and M. Y. Chan. 2010. “Thermal comfort in an office with intermittent air-conditioning operation.” Build. Serv. Eng. Res. Technol. 31 (1): 91–100. https://doi.org/10.1177/0143624409350118.
Yang, B., T. Olofsson, F. Wang, and W. Lu. 2018a. “Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden.” Build. Environ. 135: 237–245. https://doi.org/10.1016/j.buildenv.2018.03.019.
Yang, L., H. Yan, and J. C. Lam. 2014. “Thermal comfort and building energy consumption implications - A review.” Appl. Energy 115: 164–173. https://doi.org/10.1016/j.apenergy.2013.10.062.
Yang, R., H. Zhang, S. You, W. Zheng, X. Zheng, and T. Ye. 2020. “Study on the thermal comfort index of solar radiation conditions in winter.” Build. Environ. 167: 106456. https://doi.org/10.1016/j.buildenv.2019.106456.
Yang, S., A. Cannavale, D. Prasad, A. Sproul, and F. Fiorito. 2019. “Numerical simulation study of BIPV/T double-skin facade for various climate zones in Australia: Effects on indoor thermal comfort.” Build. Simul. 12 (1): 51–67. https://doi.org/10.1007/s12273-018-0489-x.
Yang, S., M. P. Wan, B. F. Ng, T. Zhang, S. Babu, Z. Zhang, W. Chen, and S. Dubey. 2018b. “A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings.” Energy Build. 170: 25–39. https://doi.org/10.1016/j.enbuild.2018.03.082.
Yang, W., and G. Zhang. 2008. “Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.” Int. J. Biometeorol. 52 (5): 385–398. https://doi.org/10.1007/s00484-007-0133-4.
Yao, J. 2013. “Teaching indoor thermal comfort using computer technologies with inexpensive instruments.” World Trans. Eng. Technol. Educ. 11 (3): 293–296.
Yao, R., V. Costanzo, X. Li, Q. Zhang, and B. Li. 2018. “The effect of passive measures on thermal comfort and energy conservation. A case study of the hot summer and cold winter climate in the Yangtze River region.” J. Build. Eng. 15: 298–310. https://doi.org/10.1016/j.jobe.2017.11.012.
Ye, H., Y. Wang, and F. Qian. 2020. “Experimental study on thermal comfort improvement of building envelope with PCM energy storage.” In Proc., 2nd Int. Conf., in Sustainable Buildings and Structures, Building a Sustainable Tomorrow, 213–220. Boca Raton, FL: CRC Press.
Yılmaz, Y., and BÇ Yılmaz. 2021. “A weighted multi-objective optimisation approach to improve based facade aperture sizes in terms of energy, thermal comfort and daylight usage.” J. Build. Phys. 44 (5): 435–460. https://doi.org/10.1177/1744259120930047.
Yu, W., B. Li, H. Jia, M. Zhang, and D. Wang. 2015. “Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design.” Energy Build. 88: 135–143. https://doi.org/10.1016/j.enbuild.2014.11.063.
Yüksel, A., M. Arıcı, M. Krajčík, M. Civan, and H. Karabay. 2021. “A review on thermal comfort, indoor air quality and energy consumption in temples.” J. Build. Eng. 35: 102013. https://doi.org/10.1016/j.jobe.2020.102013.
Yun, B. Y., J. H. Park, S. Yang, S. Wi, and S. Kim. 2020. “Integrated analysis of the energy and economic efficiency of PCM as an indoor decoration element: Application to an apartment building.” Sol. Energy 196: 437–447. https://doi.org/10.1016/j.solener.2019.12.006.
Zahid, H., O. Elmansoury, and R. Yaagoubi. 2021. “Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization.” Autom. Constr. 129: 103805. https://doi.org/10.1016/j.autcon.2021.103805.
Zamani, Z., S. Heidari, M. Azmoodeh, and M. Taleghani. 2019. “Energy performance and summer thermal comfort of traditional courtyard buildings in a desert climate.” Environ. Prog. Sustainable Energy 38 (6). https://doi.org/10.1002/ep.13256.
Zhang, F., and R. De Dear. 2015. “Thermal environments and thermal comfort impacts of Direct Load Control air-conditioning strategies in university lecture theatres.” Energy Build. 86: 233–242. https://doi.org/10.1016/j.enbuild.2014.10.008.
Zhang, G., C. Zheng, W. Yang, Q. Zhang, and D. J. Moschandreas. 2007. “Thermal comfort investigation of naturally ventilated classrooms in a subtropical region.” Indoor Built Environ. 16 (2): 148–158. https://doi.org/10.1177/1420326X06076792.
Zhang, H., R. Yang, S. You, W. Zheng, X. Zheng, and T. Ye. 2018. “The CPMV index for evaluating indoor thermal comfort in buildings with solar radiation.” Build. Environ. 134: 1–9. https://doi.org/10.1016/j.buildenv.2018.02.037.
Zhang, H., X. Yang, W. Zheng, S. You, X. Zheng, and T. Ye. 2020a. “The CPMV* for assessing indoor thermal comfort and thermal acceptability under global solar radiation in transparent envelope buildings.” Energy Build. 225: 110306. https://doi.org/10.1016/j.enbuild.2020.110306.
Zhang, S., Y. Cheng, Z. Fang, C. Huan, and Z. Lin. 2017. “Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving.” Appl. Energy 204: 420–431. https://doi.org/10.1016/j.apenergy.2017.07.064.
Zhang, Y., H. Chen, J. Wang, and Q. Meng. 2016. “Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history.” Indoor Air 26 (5): 820–830. https://doi.org/10.1111/ina.12256.
Zhang, Z., Y. Zhang, and A. Khan. 2020b. “Thermal comfort of people in a super high-rise building with central air-conditioning system in the hot-humid area of China.” Energy Build. 209: 109727. https://doi.org/10.1016/j.enbuild.2019.109727.
Zhao, J., and Y. Du. 2020. “Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China.” Sol. Energy 206: 997–1017. https://doi.org/10.1016/j.solener.2020.05.090.
Zhao, Q., Z. Lian, and D. Lai. 2021. “Thermal comfort models and their developments: A review.” Energy Built Environ. 2 (1): 21–33. https://doi.org/10.1016/j.enbenv.2020.05.007.
Zhao, Y., P. V. Genovese, and Z. Li. 2020. “Intelligent thermal comfort controlling system for buildings based on IoT and AI.” Future Internet 12 (2): 30. https://doi.org/10.3390/fi12020030.
Zhou, L., N. Li, Y. He, J. Peng, C. Wang, and A. Yongga. 2019. “A field survey on thermal comfort and energy consumption of traditional electric heating devices (Huo Xiang) for residents in regions without central heating systems in China.” Energy Build. 196: 134–144. https://doi.org/10.1016/j.enbuild.2019.05.013.
Zhu, X., X. Sheng, J. Li, and Y. Chen. 2021. “Thermal comfort and energy saving of novel heat-storage coatings with microencapsulated PCM and their application.” Energy Build. 251: 111349. https://doi.org/10.1016/j.enbuild.2021.111349.
Zuo, C., L. Luo, and W. Liu. 2021. “Effects of increased humidity on physiological responses, thermal comfort, perceived air quality, and Sick Building Syndrome symptoms at elevated indoor temperatures for subjects in a hot-humid climate.” Indoor Air 31 (2): 524–540. https://doi.org/10.1111/ina.12739.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 29Issue 2June 2023

History

Received: May 9, 2022
Accepted: Dec 21, 2022
Published online: Feb 24, 2023
Published in print: Jun 1, 2023
Discussion open until: Jul 24, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Yousef Al Horr [email protected]
Founding Chairman, Gulf Organisation for Research and Development (GORD), QSTP Tech 1, Level 2, Suite 203, P. O. Box 210162, Doha, Qatar. Email: [email protected]
Mohammed Arif [email protected]
CEng.
Professor of Sustainability and Process Management, Univ. of Brighton, C505 Cockroft Building, Lewes Rd., Brighton BN2 4GJ, UK. Email: [email protected]
Assistant Professor, Architecture & Built Environment Dept., Northumbria Univ., ELT 212, Ellison Terrace, Newcastle upon Tyne NE1 8ST, UK (corresponding author). ORCID: https://orcid.org/0000-0001-6110-803X. Email: [email protected]
Hord Arsalan [email protected]
Research Associate, School of Architecture & Built Environment (SoABE), Springfield Campus, Grimstone St., Wolverhampton WV10 0JP, UK. Email: [email protected]
Ahmed Mazroei [email protected]
Advisor, Qatari Diar Real Estate Development Co. Visitor Center Building, Lusail, Doha, Qatar. Email: [email protected]
Muhammad Qasim Rana [email protected]
Academic Tutor, School of Built Environment, Univ. College of Estate Management, 60 Queens’s Rd., Reading RG1 4BS, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share