Abstract

The mining sector plays a significant role in the economic development of countries by contributing to their gross domestic product. Once the demand for commercialized ore grows, the mining industry looks for new technologies to boost exploration and manage residue disposal. One promising technique to dispose of these residues is dry stacking. This research investigates the behavior of cemented iron ore tailings (IOTs) that use unconfined compression strength (UCS) and triaxial testing. The UCS tests investigated different dosages of cement–tailings compacted blends. In addition, nine triaxial tests were carried out, where six were cured under atmospheric pressure, and three were cured under 300 kPa. Samples were sheared under mean effective stresses of 300 and 3,000 kPa. Both curing conditions were subjected to drained axial loading, constant mean effective stress (p′), and lateral unloading stress paths. The results indicate that the porosity/cement index (η/Civ) could control the mixtures’ UCS. The triaxial tests revealed the effective strength parameters stress dependence. Samples that were consolidated under high stress might experience bond breakage, which leads to a decrease in the friction angle and a tendency toward critical state conditions. No meaningful variation was observed between samples that were cured under stress and atmospheric pressure.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their gratitude to the Brazilian Research Council CNPq for supporting the research group (Grant Nos. 307289/2018-4, 402572/2021-1, and 200164/2022-8) and the Fulbright Program for the doctoral research awards.

Notation

The following symbols are used in this paper:
Civ
volumetric cement content (expressed in relation to the total specimen volume);
c
cohesive intercept;
d
diameter;
e
void ratio;
h
height;
M
critical state stress ratio (q/p′);
p
mean effective stress;
q
deviatoric stress;
qu
unconfined compressive strength;
R2
coefficient of determination;
γd
dry unit weight;
η
porosity;
η/Civ
porosity/cement index;
ν
specific volume = 1 + e;
ϕ
effective frictional angle; and
ϕcr
effective critical state frictional angle.

References

ABNT (Brazilian Association of Technical Standards). 2018. Portland cement–requirements. ABNT NBR 16697. São Paulo, Brazil: ABNT.
Andreghetto, D., L. Festugato, G. Miguel, and A. da Silva. 2022. “Automated true triaxial apparatus development for soil mechanics investigation.” Soils Rocks 45: 1–10. https://doi.org/10.28927/SR.2022.077321.
ASTM. 2012. Standard specification for Portland cement. ASTM C150-07. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard test method for consolidated drained triaxial compression test for soils. ASTM D7181-20. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM D4767-11(2020). West Conshohocken, PA: ASTM.
ASTM. 2023. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-23. West Conshohocken, PA: ASTM.
Atkinson, J. H. 1993. An introduction to the mechanics of soils and foundations. London: McGraw-Hill.
Atkinson, J. H., and P. L. Bransby. 1978. The mechanics of soils – an introduction to critical state soil mechanics. London: McGraw-Hill.
Baker, R. 2004. “Nonlinear Mohr envelopes based on triaxial data.” J. Geotech. Geoenviron. Eng. 130: 498–506. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(498).
Bishop, A. W., D. L. Webb, and P. I. Lewin. 1965. “Undisturbed samples of London clay from the Ashford common shaft: Strength–effective stress relationships.” Géotechnique 15 (1): 1–31. https://doi.org/10.1680/geot.1965.15.1.1.
Carretta, M. S., N. Cristelo, L. Festugato, G. D. Miguel, and N. C. Consoli. 2022. “Experimental assessment of the small-strain response of residual soil under monotonic and cyclic loading.” Proc. Inst. Civ. Eng. Geotech. Eng. 175: 556–569. https://doi.org/10.1680/jgeen.20.00073.
Clayton, C. R. I., S. A. Khatrush, A. V. D. Bica, and A. Siddique. 1989. “The use of Hall effect semiconductors in geotechnical instrumentation.” Geotech. Test. J. 12 (1): 69–76. https://doi.org/10.1520/GTJ10676J.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136: 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
Consoli, N. C., A. Dalla Rosa, and R. B. Saldanha. 2011. “Variables governing strength of compacted soil-fly ash-lime mixtures.” J. Mater. Civ. Eng. 23: 432–440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000186.
Consoli, N. C., L. Festugato, G. D. Miguel, E. B. Moreira, and H. C. Scheuermann Filho. 2021. “Fatigue life of green stabilized fiber-reinforced sulfate-rich dispersive soil.” J. Mater. Civ. Eng. 33: 04021249. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003842.
Consoli, N. C., L. Festugato, G. D. Miguel, and H. C. Scheuermann Filho. 2020a. “Swelling prediction for green stabilized fiber-reinforced sulfate-rich dispersive soils.” Geosynth. Int. 28: 391–401. https://doi.org/10.1680/jgein.20.00050.
Consoli, N. C., L. Festugato, H. C. Scheuermann Filho, G. D. Miguel, A. T. Neto, and D. Amdreghetto. 2020b. “Durability assessment of soil-pozzolan-lime blends through ultrasonic-pulse velocity test.” J. Mater. Civ. Eng. 32: 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., E. B. Moreira, L. Festugato, and G. D. Miguel. 2020c. “Spread footings bearing on circular and square cement-stabilized sand layers above weakly bonded residual soil.” Soils Rocks 43: 339–349. https://doi.org/10.28927/SR.433339.
Consoli, N. C., R. A. Q. Samaniego, and N. M. K. Villalba. 2016. “Durability, strength, and stiffness of dispersive clay-lime blends.” J. Mater. Civ. Eng. 28: 04016124-1–04016124-11.
Consoli, N. C., A. Silva, A. M. Barcelos, L. Festugato, and F. Favretto. 2019. “Porosity/cement index controlling flexural tensile strength of artificially cemented soils.” J. Geotech. Geol. Eng. 38: 713–722. https://doi.org/10.1007/s10706-019-01059-w.
Consoli, N. C., J. C. Vogt, J. P. S. Silva, H. M. Chaves, H. C. S. Filho, E. B. Moreira, and A. Lotero. 2022. “Behaviour of compacted filtered iron Ore tailings–Portland cement blends: New Brazilian trend for tailings disposal by stacking.” Appl. Sci. 12: 836. https://doi.org/10.3390/app12020836.
Corte, M. B., E. Ibraim, L. Festugato, A. Diambra, and N. C. Consoli. 2019. “Stiffness of lightly cemented sand under multiaxial loading.” E3S Web Conf. 92: 11008. https://doi.org/10.1051/e3sconf/20199211008.
Crystal, C., C. Hore, and I. Ezama. 2018. “Filter-pressed dry stacking: Design considerations based on practical experience.” In Proc., Tailings and Mine Waste, 209–219. Vancouver BC: University of British Columbia.
Davies, M., J. Lupo, T. Martin, E. Mcroberts, M. Musse, and D. Ritchie. 2011. “Dewatered tailings practice – trends and observations.” In Proc., 14th Int. Conf. on Tailings and Mine Waste, 133–142. London, UK: Taylor & Francis.
Diambra, A., L. Festugato, A. Peccin, N. C. Consoli, and E. Ibraim. 2018. “Modelling tensile/compressive strength ratio of artificially cemented clean sands.” Soils Found. 58 (1): 199–211. https://doi.org/10.1016/j.sandf.2017.11.011.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
Fernandez-Iglesias, A., A. Corrêa de Araujo, S. Andrés, W. Xuan, R. Luiña, and V. Álvarez. 2013. “Study of environmental feasibility of paste and thickened tailings by life-cycle assessment.” In Proc., 16th Int. Seminar on Paste and Thickened Tailings, edited by R. Jewell, A. B. Fourie, J. Caldwell, and J. Pimenta, 349–363. Vancouver, BC: Australian Centre for Geomechanics (ACG).
Festugato, L., M. B. Corte, E. Ibraim, and A. Diambra. 2019. “Artificially cemented sand under multiaxial loading.” E3S Web Conf. 92: 11011. https://doi.org/10.1051/e3sconf/20199211011.
Festugato, L., A. Fourie, and N. C. Consoli. 2013. “Cyclic shear response of fibre-reinforced cemented paste backfill.” Géotechnique Lett. 3 (1): 5–12. https://doi.org/10.1680/geolett.12.00042.
Festugato, L., A. Fourie, and N. C. Consoli. 2015. “Cyclic shear behavior of fibre-reinforced mine tailings.” Geosyn. Int. 22 (2): 196–206.
Festugato, L., J. H. F. Galvez, G. D. Miguel, and N. C. Consoli. 2022. “Cyclic response of fibre reinforced dense sand.” Transp. Geotech. 37: 100811. https://doi.org/10.1016/j.trgeo.2022.100811.
IBRAM (Instituto Brasileiro de Mineração). 2020. Economia mineral – fevereiro de 2020. [In Portuguese.] Brasil: IBRAM.
Jefferies, M., and J. Been. 2016. Soil liquefaction – A critical state approach. 2nd ed. Boca Raton, FL: Taylor and Francis Group.
Kossoff, D., W. E. Dubbin, M. Alfredsson, S. J. Edwards, M. G. Macklin, and K. A. Hudson-Edwards. 2014. “Mine tailings dams: Characteristics, failure, environmental impacts, and remediation.” Appl. Geochem. 51: 229–245. https://doi.org/10.1016/j.apgeochem.2014.09.010.
Lupo, J., and J. Hall. 2010. “Dry stack tailings – design considerations.” In Proc., 14th Int. Conf., Tailings and Mine Waste. Boca Raton, FL: CRC Press.
Maksimovic, M. 1989. “Nonlinear failure envelope for soils.” J. Geotech. Eng. 115: 581–586. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:4(581).
Marques, S. F. V., L. Festugato, and N. C. Consoli. 2021. “Stiffness and strength of an artificially cemented sand cured under stress.” Granular Matter 23: 35. https://doi.org/10.1007/s10035-021-01099-1.
Menger, E. S., A. Silva, and L. Festugato. 2022. “Mechanical behavior of a reclaimed asphalt pavement sand-cement blend reinforced with fiber.” Geosynth. Int. 29: 1–37. https://doi.org/10.1680/jgein.21.00064.
Miguel, G. D., L. Festugato, E. B. Moreira, and M. B. Corte. 2021. “Discussion of geopolymers based on recycled glass powder for soil stabilization” Jair De Jesús Arrieta Baldovino; Ronaldo Dos Santos Izzo; Juliana Lundgren Rose; Mônica Angélica Avanci. Geotech. Geol. Eng. 39: 4649–4643. https://doi.org/10.1007/s10706-021-01762-7.
Miguel, G. D., L. Festugato, H. C. Scheuermann Filho, and J. V. L. Daronco. 2022a. “Discussion of ‘fiber-reinforced cement-stabilized macadam with various polyvinyl alcohol fiber contents and lengths’ by Chunhua Zhao, Naixing Liang, Xiaolong Zhu, Lingqing Yuan, and Bo Zhou.” J. Mater. Civ. Eng. 34: 3. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004291.
Miguel, G. D., L. Festugato, J. V. L. Daronco, and A. da Silva. 2022b. “Discussion of ‘triaxial axis shear mechanical properties of fiber-reinforced foamed lightweight soil’ by Xu Jiangbo, Luo Yongzhen, Wang Yuanzhi, Yan Changgen, Zhang Liujun, Yin Lihua, Yang Xiaohua, Qiu Youqiang, and Lan Hengxing.” J. Mater. Civ. Eng. 34: 07022012-1–07022012-2. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004472.
Miguel, G. D., R. B. Saldanha, A. da Silva, L. Festugato, H. M. Chaves, and C. C. Mendes. 2022c. “Life cycle assessment comparison of distinct soil stabilizations methods: An environmental and cost approach to the soil improvement.” In Proc., of the ICE - Ground Improvement, 176 (3): 1–41.
Mitchell, J. K. 1981. “Soil improvement—state-of-the-art report.” In Proc. 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 509–565. London, UK: International Society of Soil Mechanics and Foundation Engineering.
Morgenstern, N. R., S. G. Vick, C. B. Viotti, and B. D. Watts. 2016. Fundão tailings dam review panel – Report on the immediate causes of the failure of the Fundão dam. New York: Cleary Gottlieb Steen & Hamilton LLP.
Pasche, E., G. J. Bruschi, L. P. Specht, F. T. S. Aragão, and N. C. Consoli. 2022. “Fiber-reinforcement effect on the mechanical behavior of reclaimed asphalt pavement-powdered rock-Portland cement mixtures.” Transp. Eng. 1: 100121. https://doi.org/10.1016/j.treng.2022.100121.
Pereira, E. L. 2005. “Estudo do potencial de liquefação de rejeitos de minério de ferro sob carregamento estático.” [In Portuguese.] Dissertação de mestrado, programa de pós-graduação do departamento de engenharia civil, UFOP.
Queiroz, L. C., G. D. Miguel, G. J. Bruschi, and M. Deluan Sampaio de Lima. 2022. “Macro-micro characterization of green stabilized alkali-activated sand.” Geotech. Geol. Eng. 40: 3763–3778. https://doi.org/10.1007/s10706-022-02130-9.
Robertson, P. K., L. Melo, D. J. Williams, and G. W. Wilson. 2019. “Report of the expert panel on the technical causes of the failure of Feijão dam I.” Accessed February 4, 2022. http://www.b1technicalinvestigation.com/.
Scheuermann Filho, H. C., G. D. Miguel, and N. C. Consoli. 2022a. “Durability response of a cemented clayey sand over a wide range of porosities and cement contents.” Cleaner Mater. 5: 100117. https://doi.org/10.1016/j.clema.2022.100117.
Scheuermann Filho, H. C., G. D. Miguel, and N. C. Consoli. 2022b. “Durability response of a cemented clayey sand over a wide range of porosities and cement contents.” Cleaner Mater. 5: 100117. https://doi.org/10.1016/j.clema.2022.100117.
Scheuermann Filho, H. C., G. D. Miguel, and N. C. Consoli. 2022c. “Porosity/cement index over a wide range of porosities and cement contents.” J. Mater. Civ. Eng. 34: 06021011-1–06021011-8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004115.
Silva, A., L. Festugato, J. V. L. Daronco, and E. Menger. 2022. “Mechanical response of a sand, reclaimed asphalt pavement, and Portland cement mixture.” J. Mater. Civ. Eng. 34: 04022213. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004361.
Skempton, A. W. 1954. “The pore-pressure coefficients A and B.” Géotechnique 4 (4): 143–147. https://doi.org/10.1680/geot.1954.4.4.143.
Velten, R. Z., N. C. Consoli, H. C. Scheuermann Filho, A. C. Wagner, F. Schnaid, and J. P. R. Costa. 2022. “Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.” Géotechnique 1–12. https://doi.org/10.1680/jgeot.22.00087.
Wagner, A. C., J. P. de Sousa Silva, J. V. A. Carvalho, A. L. C. Rissoli, P. P. Cacciari, H. M. Chaves, H. C. Scheuermann Filho, and N. C. Consoli. 2023. “Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths.” J. Rock Mech. Geotech. Eng. 15: 1883–1894. https://doi.org/10.1016/j.jrmge.2022.11.013.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 8August 2024

History

Received: Jun 5, 2023
Accepted: Feb 12, 2024
Published online: May 31, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 31, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-0921-7068. Email: [email protected]
Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0001-6028-9115. Email: [email protected]
João Victor Linch Daronco [email protected]
Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. Email: [email protected]
Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-4093-3935. Email: [email protected]
Associate Professor, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6710-8927. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share