State-of-the-Art Reviews
Jul 31, 2020

Scale of Fluctuation for Spatially Varying Soils: Estimation Methods and Values

This article has been corrected.
VIEW CORRECTION
Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 6, Issue 4

Abstract

Spatial variability is one of the major sources of uncertainty in geotechnical applications. This variability is characterized customarily by the scale of fluctuation. Scale of fluctuation describes the distance over which the parameters of a soil or rock are similar or correlated. The scale of fluctuation is required in order to best characterize and to simulate a spatially variable field. This paper first provides an overview of the various methods available for estimating the scale of fluctuation from cone penetration test (CPT) data, along with two examples for comparing the methods. The first part reveals some issues with two popular estimation methods, namely the method of moments and the maximum-likelihood method (MLE). The method of moments is less sensitive to the choice of the autocorrelation function (ACF), but it could be less precise and may be based on a correlation estimator that does not produce a positive definite autocorrelation matrix. MLE can be very sensitive to the choice of the classical one-parameter ACF. It is not uncommon to assume such an ACF, rather than to identify the ACF from actual soil data with a more general two-parameter Whittle–Matérn (WM) model. This practice may not be robust. Nonetheless, a literature survey is useful if these caveats are kept in mind. The second part of this paper provides a database table of horizontal and vertical scale of fluctuation values in different locations and for different materials, collected from published case studies, which can be used as a reference when field data are not readily available. The probable range of values as a function of soil type is provided to inform sensitivity analysis and to guide the selection of a prior distribution for Bayesian analysis.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank Professor Bilal Ayyub for his encouragement to prepare this review paper for the ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering. The authors also are grateful to Richard J. Bathurst, Nezam Bozorgzadeh, Zijun Cao, Reza Jamshidi Chenari, Jinsong Huang, Shadi Najjar, Qiujing Pan, and Yutao Pan for their invaluable comments and generous assistance in the preparation of this paper. In addition, Dr. Zijun Cao assisted in clarifying the limitations of the method in Fig. 1 and corrected errors in Table 2. Dr. Zijun Cao and Yuxin Lu independently verified the results in Tables 5 and 6. Dr. Yutao Pan provided additional data on cement-mixed soils (Table 9). We thank them for their substantial efforts to improve this paper. The third author extends his appreciation to the Institute for Risk and Reliability, Leibniz University, and the funding from the Alexander von Humboldt Foundation for providing the support to complete this paper. The authors Brigid Cami and Sina Javankhoshdel would like to extend their appreciation to Rocscience for their encouragement in the preparation of this paper.

References

Abramowitz, M., and I. Stegun. 1970. Handbook of mathematical functions. New York: Dover.
Ahmed, A., and A. H. Soubra. 2014. “Probabilistic analysis at the serviceability limit state of two neighboring strip footings resting on a spatially random soil.” Struct. Saf. 49 (Jul): 2–9. https://doi.org/10.1016/j.strusafe.2013.08.001.
Ali, A., J. Huang, A. V. Lyamin, S. W. Sloan, D. V. Griffiths, M. J. Cassidy, and J. H. Li. 2014. “Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes.” Eng. Geol. 179 (Sep): 102–116. https://doi.org/10.1016/j.enggeo.2014.06.024.
Al-Naqshabandy, M. S., N. Bergman, and S. Larsson. 2012. “Strength variability in lime-cement columns based on CPT data.” Ground Improv. 165 (1): 15–30. https://doi.org/10.1680/grim.2012.165.1.15.
Anderson, N., N. Croxton, R. Hoover, and P. Sirles. 2008. Geophysical methods commonly employed for geotechnical site characterization: Transportation research circular E-C130. Washington, DC: Transportation Research Board.
ArcGIS Desktop Help. 2019. “Understanding a semivariogram: The range, sill, and nugget.” Accessed November 16, 2018. http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/understanding-a-semivariogram-the-range-sill-and-nugget.htm.
Baecher, G. B. 1986. “Geotechnical error analysis.” Transp. Res. Rec. 1105 (36): 23–31.
Baecher, G. B., and J. T. Christian. 2003. Reliability and statistics in geotechnical engineering. West Sussex, UK: Wiley.
Bagińska, I., R. Kupis, and Z. Pochrań. 2012. Badania sonda statyczna CPTU gruntu nasypowego oraz rodzimego celem analizy stanu i odkształacalności nasypu. Wrocław, Poland: Politechnika Wrocławska, Instytut Geotechniki i Hydroechniki.
Bartlett, M. S. 1946. “On the theoretical specification of sampling properties of autocorrelated time-series.” Supplement, J. R. Stat. Soc. 8 (1): 27–41. https://doi.org/10.2307/2983611.
Breysse, D., H. Niandou, S. Elachachi, and L. Houy. 2005. “A generic approach to soil–structure interaction considering the effects of soil heterogeneity.” Géotechnique 55 (2): 143–150. https://doi.org/10.1680/geot.2005.55.2.143.
Breysse, D., H. Niandou, S. Elachachi, and L. Houy. 2007. “A generic approach to soil–structure interaction considering the effects of soil heterogeneity.” In Risk and variability in geotechnical engineering, 117–124. London: Thomas Telford Publishing.
Brockwell, P. J., and R. A. Davis. 1991. Time series: Theory and methods. New York: Springer.
Cao, Z., and Y. Wang. 2012. “Bayesian approach for probabilistic site characterization using cone penetration tests.” J. Geotech. Geoenviron. Eng. 139 (2): 267–276. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000765.
Cassidy, M. J., M. Uzielli, and Y. Tian. 2013. “Probabilistic combined loading failure envelopes of a strip footing on spatially variable soil.” Comput. Geotech. 49 (Apr): 191–205. https://doi.org/10.1016/j.compgeo.2012.10.008.
Chang, C. C., and D. N. Politis. 2016. “Robust autocorrelation estimation.” J. Comput. Graphical Stat. 25 (1): 144–166. https://doi.org/10.1080/10618600.2014.969431.
Chiles, J. P., and P. Delfiner. 2009. Geostatistics: Modeling spatial uncertainty, 497. New York: Wiley.
Ching, J., Y. G. Hu, and K. K. Phoon. 2016a. “On characterizing spatially variable soil shear strength using spatial average.” Probab. Eng. Mech. 45 (Jul): 31–43. https://doi.org/10.1016/j.probengmech.2016.02.006.
Ching, J., W. H. Huang, and K. K. Phoon. 2020. “Three-dimensional probabilistic site characterization by sparse Bayesian learning.” J. Eng. Mech.
Ching, J., S. W. Lee, and K. K. Phoon. 2016b. “Undrained strength for a 3D spatially variable clay column subjected to compression or shear.” Probab. Eng. Mech. 45 (Jul): 127–139. https://doi.org/10.1016/j.probengmech.2016.03.002.
Ching, J., D. Q. Li, and K. K. Phoon. 2016c. “Statistical characterization of multivariate geotechnical data.” Chap. 4 in Reliability of geotechnical structures in ISO2394, 89–126. Boca Raton, FL: CRC Press.
Ching, J., and K. K. Phoon. 2013a. “Mobilized shear strength of spatially variable soils under simple stress states.” Struct. Saf. 41 (Mar): 20–28. https://doi.org/10.1016/j.strusafe.2012.10.001.
Ching, J., and K. K. Phoon. 2013b. “Probability distribution for mobilised shear strengths of spatially variable soils under uniform stress states.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 7 (3): 209–224. https://doi.org/10.1080/17499518.2013.801273.
Ching, J., and K. K. Phoon. 2014. “Correlations among some clay parameters—The multivariate distribution.” Can. Geotech. J. 51 (6): 686–704. https://doi.org/10.1139/cgj-2013-0353.
Ching, J., and K. K. Phoon. 2017. “Characterizing uncertain site-specific trend function by sparse Bayesian learning.” J. Eng. Mech. 143 (7): 04017028. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001240.
Ching, J., and K. K. Phoon. 2018. “Impact of autocorrelation function model on the probability of failure.” J. Eng. Mech. 145 (1): 04018123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001549.
Ching, J., and K. K. Phoon. 2019. “Constructing site-specific probabilistic transformation model by Bayesian machine learning.” J. Eng. Mech. 145 (1): 04018126. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001537.
Ching, J., K. K. Phoon, J. L. Beck, and Y. Huang. 2017a. “Identifiability of geotechnical site-specific trend functions.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 3 (4): 04017021. https://doi.org/10.1061/AJRUA6.0000926.
Ching, J., K. K. Phoon, and Y. K. Pan. 2017b. “On characterizing spatially variable soil Young’s modulus using spatial average.” Struct. Saf. 66 (May): 106–117. https://doi.org/10.1016/j.strusafe.2017.03.001.
Ching, J., K. K. Phoon, A. W. Stuedlein, and M. Jaksa. 2019. “Identification of sample path smoothness in soil spatial variability.” Struct. Saf. 81 (Nov): 101870. https://doi.org/10.1016/j.strusafe.2019.101870.
Ching, J., K. K. Phoon, and S. P. Sung. 2017c. “Worst case scale of fluctuation in basal heave analysis involving spatially variable clays.” Struct. Saf. 68 (Sep): 28–42. https://doi.org/10.1016/j.strusafe.2017.05.008.
Ching, J., K. K. Phoon, and S. H. Wu. 2016d. “Impact of statistical uncertainty on geotechnical reliability estimation.” J. Eng. Mech. 142 (6): 04016027. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001075.
Ching, J., X. W. Tong, and Y. G. Hu. 2016e. “Effective Young’s modulus for a spatially variable soil mass subjected to a simple stress state.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 10 (1): 11–26. https://doi.org/10.1080/17499518.2015.1084426.
Ching, J., S. S. Wu, and K. K. Phoon. 2015. “Statistical characterization of random field parameters using frequentist and Bayesian approaches.” Can. Geotech. J. 53 (2): 285–298. https://doi.org/10.1139/cgj-2015-0094.
Cho, S. E. 2010. “Probabilistic assessment of slope stability that considers the spatial variability of soil properties.” J. Geotech. Geoenviron. Eng. 136 (7): 975–984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309.
Cressie, N. 1992. “Statistics for spatial data.” Terra Nova 4 (5): 613–617. https://doi.org/10.1111/j.1365-3121.1992.tb00605.x.
DeGroot, D. J., and G. B. Baecher. 1993. “Estimating autocovariance of in-situ soil properties.” J. Geotech. Eng. 119 (1): 147–166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147).
Fenton, G. A. 1999. “Estimation for stochastic soil models.” J. Geotech. Geoenviron. Eng. 125 (6): 470–485. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(470).
Fenton, G. A., and D. V. Griffiths. 2003. “Bearing-capacity prediction of spatially random c-φ soils.” Can. Geotech. J. 40 (1): 54–65. https://doi.org/10.1139/t02-086.
Fenton, G. A., and D. V. Griffiths. 2005. “Three-dimensional probabilistic foundation settlement.” J. Geotech. Geoenviron. Eng. 131 (2): 232–239. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(232).
Fenton, G. A., D. V. Griffiths, and M. B. Williams. 2005. “Reliability of traditional retaining wall design.” Géotechnique 55 (1): 55–62. https://doi.org/10.1680/geot.2005.55.1.55.
Fenton, G. A., D. V. Griffiths, and M. B. Williams. 2007. “Reliability of traditional retaining wall design.” In Risk and variability in geotechnical engineering, 165–172. London: Thomas Telford.
Griffiths, D. V., and G. A. Fenton. 1993. “Seepage beneath water retaining structures founded on spatially random soil.” Géotechnique 43 (4): 577–587. https://doi.org/10.1680/geot.1993.43.4.577.
Griffiths, D. V., G. A. Fenton, and N. Manoharan. 2006. “Undrained bearing capacity of two-strip footings on spatially random soil.” Int. J. Geomech. 6 (6): 421–427. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421).
Griffiths, D. V., J. Huang, and G. A. Fenton. 2009. “Influence of spatial variability on slope reliability using 2-D random fields.” J. Geotech. Geoenviron. Eng. 135 (10): 1367–1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099.
Hedman, P., and M. Kuokkanen. 2003. “Strength distribution in lime-cement columns—Field tests at Strängnäs.” [In Swedish.] M.Sc. thesis, Royal Institute of Technology.
Hicks, M. A. 2012. “An explanation of characteristic values of soil properties in Eurocode 7.” In Vol. 1 of Modern geotechnical design codes of practice: Implementation, application and development, 36. Amsterdam, Netherlands: IOS Press.
Hicks, M. A., and J. D. Nuttall. 2012. “Influence of soil heterogeneity on geotechnical performance and uncertainty: A stochastic view on EC7.” In Proc., 10th Int. Probabilistic Workshop, 215–227. Stuttgart, Germany: Universität Stuttgart.
Hicks, M. A., and C. Onisiphorou. 2005. “Stochastic evaluation of static liquefaction in a predominantly dilative sand fill.” Géotechnique 55 (2): 123–133. https://doi.org/10.1680/geot.2005.55.2.123.
Hicks, M. A., and W. A. Spencer. 2010. “Influence of heterogeneity on the reliability and failure of a long 3D slope.” Comput. Geotech. 37 (7–8): 948–955. https://doi.org/10.1016/j.compgeo.2010.08.001.
Hicks, M. A., D. Varkey, A. P. van den Eijnden, T. de Gast, and P. J. Vardon. 2019. “On characteristic values and the reliability-based assessment of dykes.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 13 (4): 313–319. https://doi.org/10.1080/17499518.2019.1652918.
Honjo, Y., and K. Kuroda. 1991. “A new look at fluctuating geotechnical data for reliability design.” Soils Found. 31 (1): 110–120. https://doi.org/10.3208/sandf1972.31.110.
Hristopulos, D. T., and M. Žukovič. 2011. “Relationships between correlation lengths and integral scales for covariance models with more than two parameters.” Stochastic Environ. Res. Risk Assess. 25 (1): 11–19. https://doi.org/10.1007/s00477-010-0407-y.
Hu, Y. G., and J. Ching. 2015. “Impact of spatial variability in soil shear strength on active lateral forces.” Struct. Saf. 52 (Jan): 121–131. https://doi.org/10.1016/j.strusafe.2014.09.004.
Huang, J., A. V. Lyamin, D. V. Griffiths, K. Krabbenhoft, and S. W. Sloan. 2013. “Quantitative risk assessment of landslide by limit analysis and random fields.” Comput. Geotech. 53 (Sep): 60–67. https://doi.org/10.1016/j.compgeo.2013.04.009.
Huang, J. S., D. V. Griffiths, and G. A. Fenton. 2010. “System reliability of slopes by RFEM.” Soils Found. 50 (3): 343–353. https://doi.org/10.3208/sandf.50.343.
Jaksa, M. B., J. S. Goldsworthy, G. A. Fenton, W. S. Kaggwa, D. V. Griffiths, Y. L. Kuo, and H. G. Poulos. 2005. “Towards reliable and effective site investigations.” Géotechnique 55 (2): 109–121. https://doi.org/10.1680/geot.2005.55.2.109.
Javankhoshdel, S. 2016. “Reliability analysis of simple slopes and soil-structures with linear limit states.” Ph.D. dissertation, Dept. of Civil Engineering, Queen’s Univ.
Javankhoshdel, S., and R. J. Bathurst. 2014. “Simplified probabilistic slope stability design charts for cohesive and (c-φ) soils.” Can. Geotech. J. 51 (9): 1033–1045. https://doi.org/10.1139/cgj-2013-0385.
Javankhoshdel, S., N. Luo, and R. J. Bathurst. 2017. “Probabilistic analysis of simple slopes with cohesive soil strength using RLEM and RFEM.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 11 (3): 231–246. https://doi.org/10.1080/17499518.2016.1235712.
Jha, S. K., and J. Ching. 2013. “Simplified reliability method for spatially variable undrained engineered slopes.” Soils Found. 53 (5): 708–719. https://doi.org/10.1016/j.sandf.2013.08.008.
Jiang, S. H., and J. Huang. 2018. “Modeling of non-stationary random field of undrained shear strength of soil for slope reliability analysis.” Soils Found. 58 (1): 185–198. https://doi.org/10.1016/j.sandf.2017.11.006.
Jiang, S. H., D. Q. Li, L. M. Zhang, and C. B. Zhou. 2014. “Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method.” Eng. Geol. 168 (Jan): 120–128. https://doi.org/10.1016/j.enggeo.2013.11.006.
Krige, D. G. 1951. “A statistical approach to some basic mine valuation problems on the Witwatersrand.” J. South Afr. Inst. Min. Metall. 52 (6): 119–139.
Krige, D. G. 1966. “Two-dimensional weighted moving average trend surfaces for ore-evaluation.” J. South Afr. Inst. Min. Metall. 66 (Mar): 13–38.
Lacasse, S., and F. Nadim. 1996. “Uncertainties in characterising soil properties.” In Uncertainty in the geologic environment: From theory to practice, 49–75. Reston, VA: ASCE.
Larsson, S., and A. Nilsson. 2009. “Horizontal strength variability in lime-cement columns.” In Proc., Int. Symp. on Deep Mixing and Admixture Stabilizaton, edited by M. Kitazume, M. Terashi, S. Tokunaga, and N. Yasuoka, 629–634. Tokyo: Sanwa Company.
Larsson, S., H. Stille, and L. Olsson. 2005. “On horizontal variability in lime-cement columns in deep mixing.” Géotechnique 55 (1): 33–44. https://doi.org/10.1680/geot.2005.55.1.33.
Le, T. M. H. 2014. “Reliability of heterogeneous slopes with cross-correlated shear strength parameters.” Assess. Manage. Risk Eng. Syst. Geohazards 8 (4): 250–257.
Li, D. Q., S. H. Jiang, Z. J. Cao, W. Zhou, C. B. Zhou, and L. M. Zhang. 2015a. “A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties.” Eng. Geol. 187 (Mar): 60–72. https://doi.org/10.1016/j.enggeo.2014.12.003.
Li, D. Q., T. Xiao, L. M. Zhang, and Z. J. Cao. 2019. “Stepwise covariance matrix decomposition for efficient simulation of multivariate large-scale three-dimensional random fields.” Appl. Math. Modell. 68 (Apr): 169–181. https://doi.org/10.1016/j.apm.2018.11.011.
Li, J. H., Y. Zhou, L. L. Zhang, Y. Tian, M. J. Cassidy, and L. M. Zhang. 2016. “Random finite element method for spudcan foundations in spatially variable soils.” Eng. Geol. 205 (Apr): 146–155. https://doi.org/10.1016/j.enggeo.2015.12.019.
Liu, W. F., and Y. F. Leung. 2017. “Characterising three-dimensional anisotropic spatial correlation of soil properties through in situ test results.” Géotechnique 68 (9): 805–819. https://doi.org/10.1680/jgeot.16.P.336.
Liu, W. F., Y. F. Leung, and M. K. Lo. 2016. “Integrated framework for characterization of spatial variability of geological profiles.” Can. Geotech. J. 54 (1): 47–58. https://doi.org/10.1139/cgj-2016-0189.
Liu, Y., L. Q. He, Y. J. Jiang, M. M. Sun, E. J. Chen, and F. H. Lee. 2018. “Effect of in situ water content variation on the spatial variation of strength of deep cement-mixed clay.” Géotechnique 69 (5): 391–405. https://doi.org/10.1680/jgeot.17.P.149.
Liu, Y., F. H. Lee, S. T. Quek, E. J. Chen, and J. T. Yi. 2015. “Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab.” Géotechnique 65 (10): 851–865. https://doi.org/10.1680/jgeot.14.P.254.
Lloret-Cabot, M. F. G. A., G. A. Fenton, and M. A. Hicks. 2014. “On the estimation of scale of fluctuation in geostatistics.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 8 (2): 129–140. https://doi.org/10.1080/17499518.2013.871189.
Lumb, P. 1975. “Spatial variability of soil properties.” In Proc., 2nd Int. Conf. on Applications of Statistics and Probability to Soil and Structural Engineering, 397–421. Effen, Germany: Deutche Gesellschaft fuer Erd-und.
Luo, N., and R. J. Bathurst. 2018a. “Deterministic and random FEM analysis of full-scale unreinforced and reinforced embankments.” Geosynthetics Int. 25 (2): 164–179. https://doi.org/10.1680/jgein.17.00040.
Luo, N., and R. J. Bathurst. 2018b. “Probabilistic analysis of reinforced slopes using RFEM and considering spatial variability of frictional soil properties due to compaction.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 12 (2): 87–108. https://doi.org/10.1080/17499518.2017.1362443.
Luo, N., R. J. Bathurst, and S. Javankhoshdel. 2016. “Probabilistic stability analysis of simple reinforced slopes by finite element method.” Comput. Geotech. 77 (Jul): 45–55. https://doi.org/10.1016/j.compgeo.2016.04.001.
Mariethoz, G., and J. Caers. 2014. Multiple-point geostatistics: Stochastic modeling with training images. New York: Wiley.
Matheron, G. 1963. “Principles of geostatistics.” Econ. Geol. 58 (8): 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246.
McCuen, R. H., M. S. Aggour, and B. M. Ayyub. 1988. “Spacing for accuracy in ultrasonic testing for bridge timber piles.” J. Struct. Eng. 114 (12): 2652–2668. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:12(2652).
Montoya-Noguera, S., T. Zhao, Y. Hu, Y. Wang, and K. K. Phoon. 2019. “Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen-Loève expansion.” Struct. Saf. 79 (Jul): 66–79. https://doi.org/10.1016/j.strusafe.2019.03.006.
Navin, M. P., and G. M. Filz. 2005. “Statistical analysis of strength data from ground improved with DMM columns.” In Proc., Int. Conf. on Deep Mixing Best Practice and Recent Advances, Deep Mixing ‘05. Linköping, Sweden: Swedish Geotechnical Institute.
Paiboon, J., D. V. Griffiths, J. Huang, and G. A. Fenton. 2013. “Numerical analysis of effective elastic properties of geomaterials containing voids using 3D random fields and finite elements.” Int. J. Solids Struct. 50 (20–21): 3233–3241. https://doi.org/10.1016/j.ijsolstr.2013.05.031.
Pan, Y., Y. Liu, H. Xiao, F. H. Lee, and K. K. Phoon. 2018. “Effect of spatial variability on short-and long-term behaviour of axially-loaded cement-admixed marine clay column.” Comput. Geotech. 94 (Feb): 150–168. https://doi.org/10.1016/j.compgeo.2017.09.006.
Pan, Y., K. Yao, K. K. Phoon, and F. H. Lee. 2019. “Analysis of tunnelling through spatially-variable improved surrounding—A simplified approach.” Tunnelling Underground Space Technol. 93 (Nov): 103102. https://doi.org/10.1016/j.tust.2019.103102.
Papaioannou, I., and D. Straub. 2017. “Learning soil parameters and updating geotechnical reliability estimates under spatial variability—Theory and application to shallow foundation.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 11 (1): 116–128. https://doi.org/10.1080/17499518.2016.1250280.
Phoon, K. K. 2017. “Role of reliability calculations in geotechnical design.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 11 (1): 4–21. https://doi.org/10.1080/17499518.2016.1265653.
Phoon, K. K., and G. A. Fenton. 2004. “Estimating sample autocorrelation functions using bootstrap.” In Proc., 9th ASCE Specialty Conf. on Probabilistic Mechanics and Structural Reliability, 26–28. Reston, VA: ASCE.
Phoon, K. K., and F. H. Kulhawy. 1999. “Characterization of geotechnical variability.” Can. Geotech. J. 36 (4): 612–624. https://doi.org/10.1139/t99-038.
Phoon, K. K., and Y. Wang. 2019. “Chicken (method) and egg (data)—Which comes first?” In Proc., Int. Symp. on Reliability of Multi-disciplinary Engineering Systems under Uncertainty (ISRMES2019). Da’an, Taipei: Ministry of Education and Ministry of Science and Technology.
Pieczyńska-Kozłowska, J. M. 2015. “Comparison between two methods for estimating the vertical scale of fluctuation for modeling random geotechnical problems.” Stud. Geotech. et Mech. 37 (4): 95–103. https://doi.org/10.1515/sgem-2015-0049.
Priestley, M. B. 1981. Spectral analysis and time series. New York: Academic Press.
Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian processes for machine learning. Cambridge, MA: MIT Press.
Rice, S. O. 1944. “Mathematical analysis of random noise.” Bell Syst. Tech. J. 23 (3): 282–332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x.
Shahmalekpoor, P., R. Jamshidi Chenari, and S. Javankhoshdel. 2020. “Discussion of ‘Probabilistic seismic slope stability analysis and design’.” Can. Geotech. J. 57 (7): 1103–1108. https://doi.org/10.1139/cgj-2019-0386.
Soubra, A. H., and D. Y. A. Massih. 2010. “Probabilistic analysis and design at the ultimate limit state of obliquely loaded strip footings.” Géotechnique 60 (4): 275–285. https://doi.org/10.1680/geot.7.00031.
Soubra, A. H., Y. A. Massih, and M. Kalfa. 2008. “Bearing capacity of foundations resting on a spatially random soil.” In Proc., GeoCongress 2008: Geosustainability and Geohazard Mitigation (ASCEGSP 178), 66–73. Reston, VA: ASCE. https://doi.org/10.1061/9780784409718.
Spry, M. J., F. H. Kulhawy, and M. D. Grigoriu. 1988. Reliability-based foundation design for transmission line structures: Geotechnical site characterization strategy. Palo Alto, CA: Electric Power Research Institute.
Stuedlein, A. W., and T. Bong. 2017. “Effect of spatial variability on static and liquefaction-induced differential settlements.” In Proc., Geo-Risk 2017, 31–51. Reston, VA: ASCE.
Stuedlein, A. W., S. L. Kramer, P. Arduino, and R. D. Holtz. 2012. “Reliability of spread footing performance in desiccated clay.” J. Geotech. Geoenviron. Eng. 138 (11): 1314–1325. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000706.
Tang, W. H. 1979. “Probabilistic evaluation of penetration resistances.” J. Geotech. Geoenviron. Eng. Div. 105 (10): 1173–1191.
Tian, M., D. Q. Li, Z. J. Cao, K. K. Phoon, and Y. Wang. 2016. “Bayesian identification of random field model using indirect test data.” Eng. Geol. 210 (Aug): 197–211. https://doi.org/10.1016/j.enggeo.2016.05.013.
Uzielli, M., G. Vannucchi, and K. K. Phoon. 2005. “Random field characterisation of stress-normalised cone penetration testing parameters.” Géotechnique 55 (1): 3–20. https://doi.org/10.1680/geot.2005.55.1.3.
Vanmarcke, E. H. 1977. “Probabilistic modeling of soil profiles.” J. Geotech. Eng. Div. 103 (11): 1227–1246.
Vanmarcke, E. H. 1983. Random fields: Analysis and synthesis. Cambridge, MA: MIT Press.
Vessia, G., C. Cherubini, J. Pieczyńska, and W. Puła. 2009. “Application of random finite element method to bearing capacity design of strip footing.” J. Geoeng. 4 (3): 103–111.
Wackernagel, H. 2003. Multivariate geostatistics: An introduction with applications. Berlin: Springer.
Wang, Y., S. K. Au, and Z. Cao. 2010. “Bayesian approach for probabilistic characterization of sand friction angles.” Eng. Geol. 114 (3–4): 354–363. https://doi.org/10.1016/j.enggeo.2010.05.013.
Wang, Y., and T. Zhao. 2016. “Interpretation of soil property profile from limited measurement data: A compressive sampling perspective.” Can. Geotech. J. 53 (9): 1547–1559. https://doi.org/10.1139/cgj-2015-0545.
Wang, Y., and T. Zhao. 2017. “Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling.” Géotechnique 67 (6): 523–536. https://doi.org/10.1680/jgeot.16.P.143.
Wang, Y., T. Zhao, and Z. Cao. 2019a. “Bayesian perspective on ground property variability for geotechnical practice.” In Proc., 7th Int. Symp. on Geotechnical Safety and Risk (ISGSR 2019). Singapore: Research Publishing.
Wang, Y., T. Zhao, Y. Hu, and K. K. Phoon. 2019b. “Simulation of random fields with trend from sparse measurements without de-trending.” J. Eng. Mech. 145 (2): 04018130. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001560.
Wang, Y., T. Zhao, and K. K. Phoon. 2017. “Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation.” Can. Geotech. J. 55 (6): 862–880. https://doi.org/10.1139/cgj-2017-0254.
White, G. J., and B. M. Ayyub. 1990. “Semivariogram and kriging analysis in developing sampling strategies (corrosion).” In Proc., 1st Int. Symp. on Uncertainty Modeling and Analysis, 360–365. New York: IEEE. https://doi.org/10.1109/ISUMA.1990.151279.
Xiao, T., D. Q. Li, Z. J. Cao, S. K. Au, and K. K. Phoon. 2016. “Three-dimensional slope reliability and risk assessment using auxiliary random finite element method.” Comput. Geotech. 79 (Oct): 146–158. https://doi.org/10.1016/j.compgeo.2016.05.024.
Xiao, T., D. Q. Li, Z. J. Cao, and L. M. Zhang. 2018. “CPT-based probabilistic characterization of three-dimensional spatial variability using MLE.” J. Geotech. Geoenviron. Eng. 144 (5): 04018023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001875.
Xiao, T., D. Q. Li, Z. J. Cao, and L. M. Zhang. 2019. “Probabilistic characterization of 3-D spatial variability of soils: Methodology and strategy.” In Proc., 13th Int. Conf. on Applications of Statistics and Probability in Civil Engineering. Vancouver, BC, Canada: International Civil Engineering Risk and Reliability Association.
Zhang, L. M., and S. M. Dasaka. 2010. “Uncertainties in geologic profiles versus variability in pile founding depth.” J. Geotech. Geoenviron. Eng. 136 (11): 1475–1488. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000364.
Zhao, T., and Y. Wang. 2018. “Simulation of cross-correlated random field samples from sparse measurements using Bayesian compressive sensing.” Mech. Syst. Sig. Process. 112 (Nov): 384–400. https://doi.org/10.1016/j.ymssp.2018.04.042.
Zhu, D., D. V. Griffiths, and G. A. Fenton. 2018. “Worst-case spatial correlation length in probabilistic slope stability analysis.” Géotechnique 69 (1): 85–88. https://doi.org/10.1680/jgeot.17.T.050.
Zhu, Y. X., S. Zheng, Z. J. Cao, and D. Q. Li. 2019. “Revisiting the relationship between scale of fluctuation and mean cross distance.” In Proc., 13th Int. Conf. on Applications of Statistics and Probability in Civil Engineering. Seoul: Seoul Metropolitan Government.

Information & Authors

Information

Published In

Go to ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 6Issue 4December 2020

History

Published online: Jul 31, 2020
Published in print: Dec 1, 2020
Discussion open until: Dec 31, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Brigid Cami [email protected]
Geotechnical Software Developer, Rocscience, Inc., 54 St. Patrick St., Toronto, ON, Canada M5T 1V1. Email: [email protected]
Sina Javankhoshdel, Aff.M.ASCE [email protected]
Geomechanics Specialist, Rocscience, Inc., 54 St. Patrick St., Toronto, ON, Canada M5T 1V1. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, Blk E1A, #07-03, 1 Engineering Dr., Singapore 117576 (corresponding author). ORCID: https://orcid.org/0000-0003-2577-8639. Email: [email protected]
Professor, Dept. of Civil Engineering, National Taiwan Univ., #1, Roosevelt Rd. Section 4, Taipei 10617, Taiwan. ORCID: https://orcid.org/0000-0001-6028-1674. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share