Chapter
Dec 31, 2015

Beach Profile Change: Morphology, Transport Rate, and Numerical Simulation

Publication: Coastal Engineering 1988

Abstract

An empirically based engineering numerical model is presented for simulating beach profile change in the surf zone produced by waveinduced cross-shore sand transport. The model simulates the dynamics of macroscale profile change, such as the growth and movement of berms and breakpoint bars. Model development was founded on two data sets from large wave tank experiments consisting of 42 cases with different incident wave conditions, median grain size, and initial beach shape. Model predictions are tested with field data, and reasonable agreement is found.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1988
Coastal Engineering 1988
Pages: 1295 - 1309

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Magnus Larson
Assistant Professor, Department of Water Resources Engineering, Institute of Science and Technology, University of Lund, Box 118, S-221 00 Lund, Sweden.
Nicholas C. Kraus, M.ASCE
Senior Research Scientist, Coastal Engineering Research Center (CERC), U.S. Army Engineer Waterways Experiment Station, P.O. Box 631, Vicksburg, MS 39180-0631, USA.
Tsuguo Sunamura
Professor, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$286.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$286.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share