Chapter
Dec 31, 2015

The Experimental Verification of Numerical Models of Plunging Breakers

Publication: Coastal Engineering 1984

Abstract

Results of a WAVE-FOLLOWER EXPERIMENT are presented, in which a moving current meter entrained in the crest of a steep Stokes wave and a moving high-speed film camera follows the wave with its non-linear phase velocity. Measurements of wave particle velocities are then obtained both in non-breaking steep wave crests, and in breaking waves. The breaking waves in deep water conditions are obtained by the application of a non-linear sweep frequency modulation technique, and the Stokes wave becomes unstable due to interaction of 43 wave components focused into one single point in space and time, KJELDSEN 1982.
The result of this interaction is a large freak wave, breaking as a plunging breaker in deep water. Measured crest particle velocities obtained with the current meter exceeded the phase velocity of this wave with 36 %. Digitalisation of the high-speed film showed that particle velocities at the very tip of the plunging jet obtained the value 2.65 times the linear phase velocity. These results are then compared with predictions obtained from numerical simulations by LONGUET-HIGGINS & COKELET 1976 and VINJE & BREVIG 1980.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1984
Coastal Engineering 1984
Pages: 15 - 30

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Søren Peter Kjeldsen
Senior Research Engineer
NORWEGIAN HYDRODYNAMIC LABORATORIES Division: Ship and Ocean Laboratory P.O. Box 4118 - Valentinlyst N-7001 Trondheim, NORWAY

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$237.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$237.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share