Chapter
Dec 31, 2015

The Energy Spectra of Surf Waves on a Coral Reef

Publication: Coastal Engineering 1978

Abstract

The transformation of waves crossing a coral reef in Hawaii including the probability density function of the wave heights and periods and the shape of the spectrum is discussed. The energy attenuation and the change of height and period statistics is examined using spectral analysis and the zero up-crossing procedure. Measurements of waves at seven points along a 1650 ft transect in depths from 1 to 3.5 ft on the reef and 35 ft offshore were made.
The heights were tested for Rayleigh, truncated Rayleigh and Wei bull distributions. A symmetrical distribution presented by Longuet-Higgins (1975) and the Weibull distribution were compared to the wave period density function. In both cases the Weibull probability density function fitted with a high degree of correlation. Simple procedures to obtain Weibull coefficients are given.
Fourier spectra were generated and contours of cumulative energy against each position on the reef show the shifting of energy from the peak as the waves move into shallow water. A design spectrum, with the shape of the Weibull distribution, is presented with procedures given to obtain the coefficients which govern the distribution peakedness. Normalized non-dimensional frequency and period spectra were recommended for engineering applications for both reef and offshore locations.
A zero up-crossing spectrum (ZUS) constructed from the zero upcrossing heights and periods is defined and compared with the Fourier spectrum. Also discussed are the benefits and disadvantages of the ZUS, particularly for non-linear wave environments in shallow water. Both the ZUS and Fourier spectra are used to test the adequacy of formulae which estimate individual wave parameters.
Cross spectra analysis was made to obtain gain function and squared coherency for time series between two adjacent positions. It was found that the squared coherency is close to unity near the peak frequency. This means that the output time series can be predicted from the input by applying the gain function. However, the squared coherency was extremely small for other frequencies above 0.25 HZ.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1978
Coastal Engineering 1978
Pages: 588 - 608

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Theodore T. Lee
Researcher, J.K.K. Look Laboratory of Oceanographic Engineering, Department of Ocean Engineering, University of Hawaii, Honolulu, Hawaii
Kerry P. Black
Formerly Research Associate, Department of Ocean Engineering, and Graduate Student, Dept. of Oceanography, Univ. of Hawaii, Honolulu, Hawaii

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$204.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$204.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share