Chapter
Dec 31, 2015

Application of Sediment Transport Model

Publication: Coastal Engineering 1976

Abstract

A mathematical model for sediment transport under waves has been developed from concepts that have been used successfully for unidirectional flow. This model has been combined interactively with numerical models of wave refraction, wave diffraction, longshore currents and circulation currents in order to predict local topographical changes in the vicinity of a cooling water intake basin for a nuclear power station. The sediment model is calibrated using field data of sediment concentration profiles. Verification and adjustments may be made by analysing deep water wave statistics corresponding to periodic beach and hydrographic surveys.
The model can be used to investigate the effects of any wave climate and consequently different layouts of coastal structures can be examined very rapidly. For the particular problem considered it was necessary to optimise the configuration of the breakwaters forming a cooling water intake basin in order to minimise the sediment concentration at the intake, estimate maintenance dredging quantities and investigate extreme events.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1976
Coastal Engineering 1976
Pages: 1184 - 1202

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

C. A. Fleming
Mathematics Dept., Reading University, England, and Sir William Halcrow and Partners, Consulting Engineers, London, England.
J. N. Hunt
Professor of Mathematics, Reading University, England.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$226.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$226.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share