Chapter
Dec 31, 2015

Sea Tests of a Spread-Moored Landing Craft

Publication: Coastal Engineering 1964

Abstract

Sea tests of motion and mooring force were conducted on an LST (Landing Ship Tank) of about 4400 long tons displacement. The LST was spread-moored by six 2-1/16 inch and one 1-1/4 inch (port breast) stud-link chains in simple catenary configuration in about 45 feet of water in the open Gulf of Mexico about 65 air miles south of New Orleans, Louisiana. Water-level variations at a single location, ship rotations and accelerations, mooring force, and wind were measured in sea states of 2 and 4. Three recordings of 38, 62, 67 minutes duration were analyzed, using timeseries techniques to provide apparent amplitude-response operators for all of the ship's motions and seven mooring chains. Theoretical prediction of the operators using long crested regular waves was made also. In longitudinal plane, theory predicts motions 1/3 to 4 times and chain tensions 1/4 to 9 times those measured. The most probable maximum-motion amplitude responses in sea state 4 are found to be 1.7, 1.1, and 1.7 feet, respectively, in surge, sway and heave, and 3.4 and 0.5 degrees, respectively in pitch and yaw. Roll was measured only in sea-state 2 with a corresponding maximum of 2.1 degrees. Maximum wave-induced chain tensions in kips were: 85.1 and 48.0 in port and starboard bow chains respectively; 10.6 (sea state 2) and 19.7 in port and starboard breast chains; 13.9 and 4.3 in port and starboard quarter chains (sea state 2) and 9.7 in stem chain. Total tension in port bow chain was 116.1 kips (85.1 plus initial tension of 31.0 kips). Chain response operators vary directly with initial tension, whicl complicates design.
It is concluded that: (i) moor was unbalanced, i.e., port bow chain took most of load; (ii) chains loaded lightly, e.g., maximum wave induced tension was 116 kips compared to new proof load of 300 kips for the particular chain, the port bow; (iii) water level should be measured at more than one point; (iv) discouragement over differences is balanced by encouragement over agreements between measurements and theoretical prediction of motion and chain tension; (v) toward improvement: Theory needs extension to include short crested waves and barge types; (vi) initial tension unique to problem of mooring design; (vii) propulsion devices may be needed toward maintaining design initial tension, especially in storm; (viii) if directional spectra had been measured and if theory involving short crested waves had been available and used, then discrepancies between observation and theory likely would have been less.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Engineering 1964
Coastal Engineering 1964
Pages: 756 - 799

History

Published online: Dec 31, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

J. T. O'Brien
Engineers, U.S. Naval Civil Engineering Laboratory,Bureau of Yards and Docks, Department of the Navy, Port Hueneme, California
B. J. Muga
Engineers, U.S. Naval Civil Engineering Laboratory,Bureau of Yards and Docks, Department of the Navy, Port Hueneme, California

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$84.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$84.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share