Chapter
Jan 5, 2023

Liberation of Mineral-Bound Water of the Meridiani Planum Driven by Process Heat from Carbonylation Steel-Making and Concentrated Photovoltaic Electricity Generation

Publication: Earth and Space 2022

ABSTRACT

A proposal is made to liberate water from an extensive reservoir of water bound to hydrated sulfate minerals in a geological structure under the Meridiani Planum called the Burns Formation. This formation of sediments spans the equator, is over 500 km wide, has an area larger than Lake Superior, and has depths typically between 200 m and 1,000 m. About 3 kJ of enthalpy must be transferred into the sediments for each 1 gram of water vapor liberated by dehydrating the sulfates. Relatively large energy requirements are needed to liberate water by the tonne and the kilotonne. A crucial part of the proposal is to link water liberation to power tower concentrated photovoltaic electricity generation and carbonylation steel-making, both of which produce a lot of process heat. This process heat is at suitable temperatures for dehydrating the main sulfate minerals in the Burns Formation. Carbonylation steel-making benefits from an easy-to-use source of hematite that lies in a thin layer on top of soils overlying the Burns Formation. Carbonylation steel-making produces steel powder. Powder sintering to sheet steel plus robotic cutting, welding, and bending then provide a manufacturing capability. Simple electricity generation plants and water liberation plants are described that can be manufactured locally. This makes possible a large power generation capacity on the Meridiani Planum, including a large process heat-generating capacity and a deployment of water liberation equipment that scales with the available process heat capacity.

Get full access to this article

View all available purchase options and get full access to this chapter.

REFERENCES

Arvidson, R. E., Poulet, F., Morris, R. V., Bibring, J. P., Bell III, J. F., Squyres, S.W., et al. (2006). “Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets.” J. GeoPhys. Res.: Planets, 111, E12S08.
Bibring, J. P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R. E., Glendrin, A., et al. (2006). “Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data.” Science, 312(5772), 400–404.
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G., Evans, L. G., Reedy, R. C., Squyres, S. W., et al. (2004). “The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite.” Space Sci. Rev., 110 (1–2), 37.
Calvin, W. M., Shoffner, J. D., Johnson, J. R., Knoll, A. H., Pocock, J. M., Squyres, S. W., et al. (2009). “Hematite spherules at Meridiani: Results from MI, Mini-TES, and Pancam.” J. Geophys. Res., 113, E12S37.
Christensen, P. R., Bandfield, J. L., Clark, R. N., Edgett, K. S., Hamilton, V. E., Hoefen, T., et al. (2000). “Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water.” J. Geophys. Res.: Planets, 105, 9623–9642.
Christensen, P. R., and Ruff, S. W. (2004). “Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water.” J. Geophys. Res.: Planets, E08003,.
Christensen, P. R., Wyatt, M. B., Glotch, T. D., Rogers, A. D., Anwar, S., Arvidson, R. E., et al. (2004). “Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover,” Science, 306, (5702), 1733–1739.
Christensen, P. R., Ruff, S. W., Fergason, R., Gorelick, N., Jakosky, B. M., Lane, M. D., et al. (2005). “Mars Exploration Rover candidate landing sites as viewed by THEMIS.” Icarus, 176(1), 12–43.
Chou, I. M., and Seal, R. R. (2007). “Magnesium and calcium sulfate stabilities and the water budget of Mars.” J. Geophys. Res., 112, E11004.
Desborough, G. A., Smith, K. S., Lowers, H. A., Swayze, G. A., Hammarstrom, J. M., Diehl, S. F., et al. (2006). “The use of synthetic jarosite as an analog for natural jarosite.” In 7th Int. Conf. on Acid Rock Drainage (ICARD), 458–474.
Diez, B., Feldman, W. C., Maurice, S., Gasnault, O., Prettyman, T. H., Mellon, M. T., Aharonson, O., and Schorghofer, N. (2008). “H layering in the top meter of Mars.” Icarus, 196(2), 409–421.
Edgett, K. S., and Parker, T. J. (1997). “Water on early Mars: Possible sub-aqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani” Geophys. Res. Let., 24, 2897–2900.
Feldman, W. C. (2003). “The global distribution of near-surface hydrogen on Mars.” In Sixth Int. Conf. Mars, Lunar and Planet. Inst., Pasadena, CA, (20–25).
Feldman, W. C., Prettyman, T. H., Maurice, S., Plaut, J. J., Bish, D. L., Vaniman, D. T., et al. (2004). “Global distribution of near-surface hydrogen on Mars.” J. Geophys. Res.: Planets, 109(E9).
Feldman, W. C., Mellon, M. T., Gasnault, O., Diez, B., Elphic, R. C., Hagerty, J. J., et al. (2007). “Vertical distribution of hydrogen at high northern latitudes on Mars: The Mars Odyssey Neutron Spectrometer.” Geophys. Res. Let., 34(5).
Feldman, W. C., Bandfield, J. L., Diez, B., Elphic, R. C., Maurice, S. and Nelli, S. M. (2008a). “North to south asymmetries in the water-equivalent hydrogen distribution at high latitudes on Mars.” J. Geophys. Res.: Planets, 113(E8).
Feldman, W. C., Bourke, M. C., Elphic, R. C., Maurice, S., Bandfield, J., Prettyman, T. H., Diez, B. and Lawrence, D. J. (2008b). “Hydrogen content of sand dunes within Olympia Undae.” Icarus, 196(2), 422–432.
Fenton, L. K., Michaels, T. I., and Chojnacki, M. (2015). “Late Amazonian aeolian features, gradation, wind regimes, and Sediment State in the Vicinity of the Mars Exploration Rover Opportunity, Meridiani Planum, Mars.” Aeolian Res., 16, 75–99.
Frost, R., Wills, R. A., Kloprogge, T., and Martens, W. (2006). “Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6.” J. Thermal Anal. and Calorimetry. 83(1), 213–218.
Golombek, M. P., Grant, J. A., Crumpler, L. S., Greeley, R., Arvidson, R. E., Bell III, J. F. et al. (2006). “Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars.” J. Geophys. Res.: Planets, 111, E12S10.
Golombek, M. P., Warner, N. H., Ganti, V., Lamb, M. P., Parker, T. J., Fergason, R. L., and Sullivan, R. (2014). “Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars.” J. Geophys. Res.: Planets, 119, 2522–2547.
Grevel, K. D., Majzlan, J., Benisek, A., Dachs, E., Steiger, M., Fortes, A. D., and Marler, B. (2012). “Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO4.4H2O (Starkeyite) and MgSO4.3H2O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates.” Astrobiology, 12(11), 1042–1053.
Grotzinger, J. P., Arvidson, R. E., Bell III, J. F., Calvin, W., Clark, B. C., Fike, D. A. et al. (2005). “Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars.” Earth and Planetary Sci. Let., 240, 11–72.
Hartmann, W. K., and Neukum, G. (2001). “Cratering chronology and evolution of Mars.” Space Sci. Rev., 96, 165–194.
Hurowitz, J. A., Fischer, W. W., Tosca, N. J., and Milliken, R. E. (2010). “Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars.” Nature Geoscience, 3, 323–326.
Hynek, B. M., and Phillips, R.J. (2001). “Evidence for extensive denudation of the Martian highlands.” Geology, 29(5), 407–410.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., Schörder, C., Rodionov, D. S., da Souza, P. A., et al., (2004). “Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer.” Science, 306 (5702), 1740–1745.
MER APXS Team (2016). MER APXS Derived Oxide Data Bundle. PDS Geosciences (GEO) Node.
MER PanCam Team (2016). MER1 Pancam Science Derived IOF Data Bundle. PDS Geosciences (GEO) Node.
McLennan, S. M., Bell III, J. F., Calvin, W. M., Christensen, P. R., Clark, B. C., de Souza, P. A., et al. (2005). “Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars.” Earth and Planetary Sci. Let., 240(1), 95–121.
Mellerowicz, B., Zacny, K., Palmowski, J., Bradley, B., Stolov, L., Yen, B. et al. (2021). “RedWater: Extraction of Water from Mars’ Ice Deposits.” In AIAA ASCEND 2021, 4037, Las Vegas, Nevada & Virtual.
Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W. et al. (2006). “Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits.” J. GeoPhys. Res. Planets, 111, E12S15.
Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W. et al. (2006). “Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits.” J. GeoPhys. Res., 111, E12S15.
Musk, E. (2018). “Making life multi-planetary.” New Space, 6(1), 2–11.
Okhrimenko, L., Favergeon, L., Johannes, K., Kuznik, F., and Pijolat, M. (2017). “Thermodynamic study of MgSO4—H2O system dehydration at low pressure in view of heat storage.” Thermochimica Acta, 656, 135–143.
Olsen, R. M. (2021). “Iron Oxide Harvesting on Mars.” In AIAA ASCEND 2021, 4037, Las Vegas, Nevada & Virtual.
Pathare, A. V., Feldman, W. C., Prettyman, T. H., and Maurice, S. (2018). “Driven by excess? Climatic implications of new global mapping of near-surface water-equivalent hydrogen on Mars.” Icarus, 301, 97–116.
Peterson, R. C., Nelson, W., Madu, B., and Shurvell, H. G. (2007). “Meridianiite: A new mineral species observed on Earth and predicted to exist on Mars.” Am. Minerol., 92(10).
Prettyman, T. H., Feldman, W. C., Mellon, M. T., McKinney, G. W., Boynton, W. V., Karunatillake, S., et al. (2004). “Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy.” J. Geophys. Res.: Planets, 109(E5).
Prettyman, T. H., Feldman, W. C., and Titus, T. N. (2009). “Chracterization of Mars’ seasonal caps using neutron spectroscopy.” J. Geophys. Res.: Planets, 114(E8).
Rieder, R., Gellert, R., Anderson, R. C., Bruckner, J., Clark, B. C., Dreibus, G. et al. (2004). “Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer.” Science, 306 (5702), 1746–1749.
Robie, R. A., and Waldbaum, D. R. (1968). “Thermodynamic Properties of Minerals and Related Substances at 298.15oK (25°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures.” Geological Survey Bulletin 1259, U.S. Department of the Interior. Available from https://pubs.usgs.gov/bul/1259/report.pdf.
Shen, L., Sippola, H., Li, X., Lindberg, D., and Taskinen, P. (2019). “Thermodynamic Modeling of Calcium Sulfate Hydrates in the CaSO4−H2O System from 273.15 to 473.15 K with Extension to 548.15 K.” J. Chem. Eng. Data, 64, 2697–2709.
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., Bell III, J. F., Cabrol, N. A., Calvin, W., et al. (2004). “Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site.” Science, 306(5702), 1723–1726.
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., Bell, J. F., Calvin, W., Christensen, P. R., et al. (2004). “In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars.” Science, 306(5702), pp. 1709–1714.
Sullivan, R., Anderson, R., Biesiadecki, J., Bond, T., and Stewart, H. (2011). “Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs.” J. Geophys. Res.: Planets, 116, E02006.
van Susante, P. J., Zacny, K., Johnson, G., and Zerbel, S. M. (2021). “Melting Ice under Martian and other Environmental Conditions for ISRU.” In AIAA ASCEND 2021, 4037, Las Vegas, Nevada & Virtual.
Vaniman, D. T., and Chipera, S. J. (2006). “Transformations of Mg- and Ca-sulfate hydrates in Mars regolith.” Am. Minerol., 91(10), 1628–1642.
Yen, A. S., Mittlefehldt, D. W., McLennan, S. M., Gellert, R., Bell III, J. F., McSween, H. Y., et al. (2006). “Nickel on Mars: Constraints on meteoritic material at the surface.” J. Geophys. Res., 111, E12S11.

Information & Authors

Information

Published In

Go to Earth and Space 2022
Earth and Space 2022
Pages: 343 - 354

History

Published online: Jan 5, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Rif Miles Olsen [email protected]
Two Planet Life and Two Planet Steel. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$164.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$164.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share