Chapter
Oct 21, 2021
Regional Conference on Permafrost 2021 and the 19th International Conference on Cold Regions Engineering

Mountain Permafrost in the Tropical Andes of Peru: The 0°C Isotherm as a Potential Indicator

Publication: Permafrost 2021: Merging Permafrost Science and Cold Regions Engineering

ABSTRACT

In the tropical Andes of Peru very little is known about the occurrence and extent of mountain permafrost. Only recently systematic studies have been carried out on the high elevation sites of the mountain ranges (cordilleras). In the framework of the first pioneering studies, and with the objective to improve the understanding of characteristics of mountain permafrost and rock glaciers, we analyze how mountain permafrost in the Peruvian Andes is correlated with the altitude of the 0 °C isotherm (ZIA). Climate change has generated an increase in air temperature and in the ZIA in the past decades. These temperature changes could lead to impact the state of the mountain permafrost. In this research, we focus on two mountain regions: The Cordillera Central (CC) and the Cordillera Volcánica (CV), the first located in the central zone and the second in the south zone of Peru. The study used air temperature data from 20 weather stations (2002–2016) to calculate the mean annual air temperature (MAAT), interpolated using a multiple linear regression model (MLRM) and digital elevation model (MERIT DEM). Occurrence and extent of 46 intact rock glaciers (IRG) and the global model of permafrost (Permafrost Zonation Index) were used to validate the results. The MAAT of CC has a minimum value around -4.1°C (R2 = 0.8) and a ZIA average of ~5152 m a.s.l. None of the IRGs are located above the ZIA. The MAAT of CV has a minimum value around of -5.5°C (R2 = 0.8), a ZIA average of ~4861 m a.s.l., and 60% of the IRGs are located above of the ZIA. The results show a greater variation of the position of the ZIA in CC in comparison to CV, which could indicate a possible degradation of mountain permafrost in these mountain ranges.

Get full access to this article

View all available purchase options and get full access to this chapter.

Acknowledgements

We are grateful to the Permafrost Project, executed through the National Institute for Glacier and Mountain Ecosystem Research of Peru, for providing all the necessary tools to carry out the rock glacier inventory and for all the useful information for the study. The authors acknowledge the financial support from the CONCYTEC-World Bank Project "Improvement and Expansion of the National Science Technology and Technological Innovation System Services"; 8682-PE, through its executing unit FONDECYT [Contract No. 23-2018 FONDECYT-BM-IADT-MU] of the Permafrost Project.

5. REFERENCES

Alzate, D., Araujo, G. A., Rojas, E., Gómez, D., & Matínez, F. E. (2018). Regnie interpolation for rain and temperature in the andean, caribbean and pacific regions of Colombia. Colombia Forestal, 21(1), 102–118. https://doi.org/10.14483/2256201X.11601
Andrés, N., Palacios, D., Úbeda, J., & Alcalá, J. (2011). Ground thermal conditions at Chachani volcano, southern Peru. Geografiska Annaler, Series A: Physical Geography, 93(3), 151–162. https://doi.org/10.1111/j.1468-0459.2011.00424.x
Arenson, L., Noetzli, J., Gärtner-Roer, I., Phillips, M., Gruber, S., Haeberli, W., Delaloye, R., Krautblatter, M., Kneisel, C., & Isaksen, K. (2011). Mountain permafrost: development and challenges of a young research field. Journal of Glaciology, 56(200), 1043–1058. https://doi.org/10.3189/002214311796406121
Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., & Felipe-Obando, O. (2019). Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770–785. https://doi.org/10.1080/02626667.2019.1649411
Azócar, G. (2013). Modeling of permafrost distribution in the Semi-arid Chilean Andes, MS thesis, University of Waterloo, Canada, 160 pp., 2013.
Azócar, G., Brenning, A., & Bodin, X. (2017). Permafrost distribution modelling in the semi-arid Chilean Andes. The Cryosphere, 11(2), 877–890. https://doi.org/10.5194/tc-11-877-2017
Barsch, D. (1996). Rockglaciers: Indicators for the present and former geoecology in high mountain environments(I. Douglas & M. Marcus (eds.)). Springer Series.
Beniston, M. (2006). Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562(1), 3–16. https://doi.org/10.1007/s10750-005-1802-0
Bradley, R. S., Keimig, F. T., Diaz, H. F., & Hardy, D. R. (2009). Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophysical Research Letters, 36(17), 1–4. https://doi.org/10.1029/2009GL037712
Brenning, A. (2005). Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33-35°S). Permafrost and Periglacial Processes, 16(3), 231–240. https://doi.org/10.1002/ppp.528
Carey, M., Huggel, C., Bury, J., Portocarrero, C., & Haeberli, W. (2012). An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112(3–4), 733–767. https://doi.org/10.1007/s10584-011-0249-8
Colucci, R. R., Boccali, C., Žebre, M., & Guglielmin, M. (2016). Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. In Geomorphology(Vol. 269). Elsevier B.V. https://doi.org/10.1016/j.geomorph.2016.06.039
Delaloye, R., & Echelard, T. (2020). Towards standard guidelines for inventorying rock glaciers Version 4.1(pp. 0–13). IPA Action Group Rock glacier inventories and kinematics.
Deluigi, N., Lambiel, C., & Kanevski, M. (2017). Data-driven mapping of the potential mountain permafrost distribution. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.02.041
EEA (European Evironmental Agency). (2009). Regional climate change and adaptation Regional climate change and adaptation. In Report EEA No. 8/2009(Vol. 8, Issue 8). https://doi.org/10.2800/12552
Esper Angillieri, M. (2017). Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites. Journal of South American Earth Sciences, 73, 42–49. https://doi.org/10.1016/j.jsames.2016.12.002
Evans, S. G., & Clague, J. J. (1994). Recent climatic change and catastrophic geomorphic processes in mountain environments. In Geomorphology and Natural Hazards(Vol. 10). Elsevier B.V. https://doi.org/10.1016/b978-0-444-82012-9.50012-8
Gorbunov, A. P. (1978). Permafrost Investigations in High-Mountain Regions. Arctic and Alpine Research, 10(2), 283. https://doi.org/10.2307/1550761
Gruber, S. (2012). Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6(1), 221–233. https://doi.org/10.5194/tc-6-221-2012
Gruber, S. & Haeberli, W. (2009). Mountain Permafrost. In R. Margesin (Ed.), Permafrost Soils (Vol. 16). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69371-0
Guodong, C., & Dramis, F. (1992). Distribution of Mountain Permafrost and Climate - A state of the art report. Permafrost and Periglacial Processes, 3(November 1991), 83–91.
Haeberli, W., Guodong, C., & Harris, S. A. (1993). Mountain Permafrost and Climatic Change. Permafrost and Periglacial Processe, 4(February), 165–174. https://doi.org/1045-6740/93/020165-10$10.00
Haeberli, W. (1990). Glacier and permafrost signals of 20th-century warming. Annals of Glaciology, 14, 99–101. https://doi.org/10.3189/s026030550000834x
Haeberli, W., Schaub, Y., & Huggel, C. (2017). Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 293, 405–417. https://doi.org/10.1016/j.geomorph.2016.02.009
Harris, J., Bowman, K. P., & Shin, D. B. (2000). Comparison of freezing-level altitudes from the NCEP reanalysis with TRMM precipitation radar brightband data. Journal of Climate, 13(23), 4137–4148. https://doi.org/10.1175/1520-0442(2000)0134137:coflaf2.0.co;2
Humlum, O. (1982). Rock glacier types on Disko, Central West Greenland. Geografisk Tidsskrift-Danish Journal of Geography, 82(1), 59–66. https://doi.org/10.1080/00167223.1982.10649152
Hunziker, S., Brönnimann, S., Calle, J., Moreno, I., Andrade, M., Ticona, L., Huerta, A., & Lavado-Casimiro, W. (2018). Effects of undetected data quality issues on climatological analyses. Climate of the Past, 14(1), 1–20. https://doi.org/10.5194/cp-14-1-2018
INAIGEM (Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña). (2018). Inventario Nacional de Glaciares Las Cordilleras Glaciares del Peru.
IPCC (Intergovernmental Panel of Climate Change). (2019). Calentamiento Global de 1,5 °C. In Intergovernmental Panel on Climate Change.
Kerschner, H. (1978). Paleoclimatic Inferences from Late Wurm Rock Glaciers, Eastern Central Alps, Western Tyrol, Austria. Arctic and Alpine Research, 10(3), 635. https://doi.org/10.2307/1550684
Lambiel, C., & Reynard, E. (2001). Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes-Hérémence area (Western Swiss Alps). Norsk Geografisk Tidsskrift, 55(4), 219–223. https://doi.org/10.1080/00291950152746559
Loarte, E., Medina, K., Dávila, L., Huggel, C., Haeberli, W., Frey, H., & Muñoz, R. (2019). Thermal and morphological characteristics and spatial distribution of rock glaciers in the Cordillera Chila, southern Peru. July, 1–2. https://doi.org/10.1007/978-3-540-69371-CITATIONS
Marcer, M., Bodin, X., Brenning, A., Schoeneich, P., Charvet, R., & Gottardi, F. (2017). Permafrost Favorability Index: Spatial Modeling in the French Alps Using a Rock Glacier Inventory. Frontiers in Earth Science, 5(December), 1–17. https://doi.org/10.3389/feart.2017.00105
Matsuoka, N., & Ikeda, A. (2001). Geological control on the distribution and characteristics of talus-derived rock glaciers. Annual Report of the Institute of Geoscience, the University of Tsukuba, 27, 11–16.
Pereyra, F., & Roverano, D. (2010). Glaciares de roca fósiles y otras formas criogénicas en San Carlos de Bariloche, Río Negro. Revista de La Asociacion Geologica Argentina, 66(3), 430–437.
Rangecroft, S., Harrison, S., & Anderson, K. (2015). Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance. Arctic, Antarctic, and Alpine Research, 47(1), 89–98. https://doi.org/10.1657/AAAR0014-029
Rangecroft, S., Suggitt, A. J., Anderson, K., & Harrison, S. (2016). Future climate warming and changes to mountain permafrost in the Bolivian Andes. Climatic Change, 137(1–2), 231–243. https://doi.org/10.1007/s10584-016-1655-8
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., & Gratzki, A. (2013). A Central European precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235–256. https://doi.org/10.1127/0941-2948/2013/0436
Schauwecker, S., Rohrer, M., Acuña, D., Cochachin, A., Dávila, L., Frey, H., Giráldez, C., Gómez, J., Huggel, C., Jacques-Coper, M., Loarte, E., Salzmann, N., & Vuille, M. (2014). Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global and Planetary Change, 119, 85–97. https://doi.org/10.1016/j.gloplacha.2014.05.005
Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom, R., Perry, B., Salzmann, N., Schwarb, M., & Suarez, W. (2017). The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. Journal of Geophysical Research, 122(10), 5172–5189. https://doi.org/10.1002/2016JD025943
SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú). (2016). Informe sobre la situacion actual de los glaciares monitoreados por el SENAMHI.
Trombotto, D., Buk, E., & Hernández, J. (1997). Monitoring of mountain permafrost in the Central Andes, Cordon del Plata, Mendoza, Argentina. Permafrost and Periglacial Processes, 8(1), 123–129. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1123::AID-PPP2423.0.CO;2-M
Vela, J. (2018). Peligros en zonas de explotación de laderas en la cuenca del Valle del Rio Chilo, Sector Alto Cayma, Arequipa.
Vicente-serrano, S. M., López-moreno, J. I., Correa, K., Avalos, G., Bazo, J., Azorin-molina, C., Domínguez-castro, F., Kenawy, E., Gimeno, L., & Nieto, R. (2017). Recent changes in monthly surface air temperature over Peru, 1964 – 2014. International Journal of Climatology, 38(1), 283–306. https://doi.org/10.1002/joc.5176
Vuille, M., Franquist, E., Garreaud, R., Lavado, W., & Cáceres, B. (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research, 120(9), 3745–3757. https://doi.org/10.1002/2015JD023126
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. https://doi.org/10.1002/2017GL072874
Yoshikawa, K., Úbeda, J., Masías, P., Pari, W., Apaza, F., Vasquez, P., Ccallata, B., Concha, R., Luna, G., Iparraguirre, J., Ramos, I., De la Cruz G., Cruz, R., Pellitero, R., & Bonshoms, M. (2020). Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO). Permafrost and Periglacial Processes, April, 1–12. https://doi.org/10.1002/ppp.2064h

Information & Authors

Information

Published In

Go to Permafrost 2021
Permafrost 2021: Merging Permafrost Science and Cold Regions Engineering
Pages: 117 - 129
Editor: Jon Zufelt, Ph.D., HDR Alaska
ISBN (Online): 978-0-7844-8358-9

History

Published online: Oct 21, 2021
Published in print: Oct 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Hairo León [email protected]
Faculty of Environmental Sciences, Santiago Antúnez de Mayolo National Univ.; National Institute for Research on Glaciers and Mountain Ecosystems, Huaraz, Peru (corresponding author). E-mail: [email protected]
Katy Medina [email protected]
National Institute for Research on Glaciers and Mountain Ecosystems, Huaraz, Peru. E-mail: [email protected]
Edwin Loarte [email protected]
National Institute for Research on Glaciers and Mountain Ecosystems, Huaraz, Peru. E-mail: [email protected]
Guillermo Azócar [email protected]
Atacama Ambiente Consultores, Chile. E-mail: [email protected]
Pablo Iribarren [email protected]
Instituto de Ciencias de la Tierra, Faculty of Sciences, Valdivia, Chile. E-mail: [email protected]
Christian Huggel [email protected]
Dept. of Geography, Univ. of Zurich, Zurich, Switzerland. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$80.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$80.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share