Chapter
Mar 29, 2018

Characterizing Point Cloud Data Density for Spatial Change-Based Maintenance Planning of Civil Infrastructure Systems

Publication: Construction Research Congress 2018

Abstract

Understanding the impacts of point-cloud data density on the reliability of change detection calculations is crucial for maintenance planning of civil infrastructure systems. Automated spatial change detection of structures (e.g., deformations of bridges) based on laser scanning data can help engineers assess structural conditions and prioritize maintenance activities. Collecting point cloud data with high accuracy and level of detail is time-consuming and difficult due to complexed environments on construction sites. An efficient method that evaluates the impacts of data quality on change detection is thus important for inspectors. Inspectors could collect point clouds with relatively low data densities to save time for data collection and data processing without compromising domain requirements of change detection in engineering projects. As a step toward comprehending 3D data quality on spatial change analysis of structures, this paper examines an automated 3D data quality checking method to quantify the impacts of point cloud data density on the reliability of spatial change detection of civil infrastructures. The authors designed five comparisons for supporting the impact analysis of data density. In the five comparisons, the authors used the same reference point cloud and five point clouds with different data densities. The authors sub sampled the point clouds to make them having lower, similar, and higher data densities than those of the reference point cloud. Based on the change detection results, the authors found that when the data density of the point cloud is similar as that of the reference point cloud, the change detection method detects most of the changed areas. When data density of the compared point cloud is much higher than that of the reference point cloud, the area of the detected changes increases a little but it takes significantly more time to collect and process the data. The future research will further characterize the impacts of data noise, accuracy, and data completeness on the reliability of change analysis of structures of various geometric complexities.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Construction Research Congress 2018
Construction Research Congress 2018
Pages: 776 - 785

History

Published online: Mar 29, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Jiawei Chen [email protected]
Del E. Webb School of Construction, Arizona State Univ., 651 E. University Dr., Tempe, AZ 85287-0204. E-mail: [email protected]
Pingbo Tang [email protected]
Del E. Webb School of Construction, Arizona State Univ., 651 E. University Dr., Tempe, AZ 85287-0204. E-mail: [email protected]
Dept. of Bridge Engineering, School of Transportation, Southeast Univ., Nanjing 210096, China. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$152.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$152.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share