Chapter
Aug 24, 2017

Application of Ultrasonic Pulse Velocity Testing of Asphalt Concrete Mixtures to Improve the Prediction Accuracy of Dynamic Modulus Master Curve

Publication: Airfield and Highway Pavements 2017

Abstract

Proper characterization of asphalt concrete mixtures with respect to the changes in dynamic modulus (DM) with the applied loading frequency and test temperature is a key task for pavement structural design. This phenomenon is generally described through the use of a modulus master curve, which is an important input for mechanistic empirical pavement design tools. In the current abbreviated DM testing protocol, given in AASHTO TP-79-09, the limiting maximum modulus value, estimated through Hirsch model, is used to constrain the upper portion of the modulus master curve function. However, the predicted modulus values of higher shelf region can become an artifact of the presumed upper asymptote due to any inaccuracies in estimation of the limiting maximum modulus value. In this study, DM tests were coupled with a series of ultrasonic pulse velocity (UPV) tests to investigate the validity of the current limiting maximum modulus assumption. Three hot mix asphalt mixtures prepared using different binder performance grades, i.e. 52-28, 64-22, and 76-16, were investigated. Experimental program consisted of DM and UPV testing of the specimens at 4, 10, 25, and 40°C along with a series of additional UPV tests at -10°C. Polynomial shift factor function was used to construct the modulus master curves. It was concluded that the Hirsch model can result in underpredicting the actual limiting maximum modulus. Results indicate the potential advantages of using higher frequency-range nondestructive tests along with the conventional modulus tests to improve the prediction accuracy of higher shelf of modulus master curve.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Airfield and Highway Pavements 2017
Airfield and Highway Pavements 2017
Pages: 152 - 164

History

Published online: Aug 24, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Pezhouhan Tavassoti-Kheiry, Ph.D., M.ASCE [email protected]
Thomas D. Larson Pennsylvania Transportation Institute, Northeast Center for Excellence in Pavement Technology (NECEPT), Pennsylvania State Univ., University Park, PA 16802. E-mail: [email protected]
Ilker Boz, Ph.D., M.ASCE [email protected]
Dept. of Civil and Environmental Engineering, Michigan State Univ., East Lansing, MI 48824. E-mail: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802. E-mail: [email protected]
Mansour Solaimanian, Ph.D., M.ASCE [email protected]
P.E.
Director of the Northeast Center for Excellence in Pavement Technology (NECEPT), Pennsylvania State Univ., University Park, PA 16802. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$80.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart
Buy E-book
$80.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share