Free access
Back Matter
Jul 17, 2023

REFERENCES

Publication: Wind Tunnel Testing for Buildings and Other Structures
First page of PDF

Formats available

You can view the full content in the following formats:

References

Anno, Y. 1984. “Requirements for modeling of a snowdrift.” Cold Reg. Sci. Technol. 8 (3): 241–252. https://doi.org/10.1016/0165-232X(84)90055-7.
ANSI (American National Standards Institute). 2007. Laboratory methods of testing fans for certified aerodynamic performance rating. ANSI/AMCA 210-07, ANSI/ASHRAE 51-07. Washington, DC: ANSI.
ANSI. 2016. Estimating tornado, hurricane, and extreme straight line wind characteristics at nuclear facility sites. ANSI/ANS-2.3-2011. Washington, DC: ANSI.
Archibald, E. D. 1886. “Some results of observations with kite-wire suspended anemometers up to 1300 feet above the ground in 1883–85.” Nature 33 (860): 593–595. https://doi.org/10.1038/033593b0.
ASCE. 1999. Wind tunnel studies of buildings and structures. ASCE MOP 67. Reston, VA: ASCE.
Asghari Mooneghi, M., P. Irwin, and A. Chowdhury. 2014. “Large-scale testing on wind uplift of roof pavers.” J. Wind Eng. Ind. Aerodyn. 128 (May): 22–36. https://doi.org/10.1016/j.jweia.2014.03.001.
Asghari Mooneghi, M., P. Irwin, and A. Chowdhury. 2016. “Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances.” J. Wind Eng. Ind. Aerodyn. 157 (Oct): 47–62. https://doi.org/10.1016/j.jweia.2016.08.003.
AS/NZS (Standards Australia/Standards New Zealand). 2016. Structural design actions: Wind actions. AS/NZS 1170.2:2011. Sydney, Australia: Standards Australia.
AWES (Australasian Wind Engineering Society). 2019. Quality assurance manual: Wind engineering studies of buildings. AWES-QAM-1-2019. Australia: AWES.
Bagnold, R. A. 1941. The physics of blown sand and desert dunes. London: Methuen.
Baker, C., and M. Sterling. 2019. “Are tornado vortex generators fit for purpose?” J. Wind Eng. Ind. Aerodyn. 190 (Jul): 287–292. https://doi.org/10.1016/j.jweia.2019.05.011.
Banks, D. 2013. “The role of corner vortices in dictating peak wind loads on tilted flat solar panels mounted on large, flat roofs.” J. Wind Eng. Ind. Aerodyn. 123 (Dec): 192–201. https://doi.org/10.1016/j.jweia.2013.08.015.
Banks, D., T. Guha, and Y. Fewless. 2015. “A hybrid method of generating realistic full-scale time series of wind loads from large-scale wind tunnel studies: Application to solar arrays.” In Proc., Int. Conf. on Wind Engineering, Porto Alegre, Brazil.
Bendat, J. S., and A. G. Piersol. 2010. Random data: Analysis and measurement procedures. 4th ed. New York: Wiley.
Bergh, H., and H. Tijdeman. 1967. Theoretical and experimental results for the dynamic response of pressure measuring systems. Amsterdam, Netherlands: National Aero- and Astronautical Research Institute.
Black, A. W., and W. S. Ashley. 2010. “Nontornadic convective wind fatalities in the United States.” Nat. Hazards 54, 355–366. https://doi.org/10.1007/s11069-009-9472-2.
Blocken, B., A. van der Hout, J. Dekker, and O. Weiler. 2015. “CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain.” J. Wind Eng. Ind. Aerodyn. 147 (Dec): 43–57. https://doi.org/10.1016/j.jweia.2015.09.007.
Boggs, D. W., and Peterka, J. A. 1989. “Aerodynamic model tests on tall buildings.” J. Eng. Mech. 115 (3): 618–635. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(618).
Browning, K. A. 1964. “Airflow and precipitation trajectories within severe local storms which travel to the right of the winds.” J. Atmos. Sci. 21 (6): 634–639. https://doi.org/10.1175/1520-0469(1964)021%3C0634:AAPTWS%3E2.0.CO;2.
Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson. 2002. “Radar observations of the 3 May 1999 Oklahoma City tornado.” Weather Forecasting 17 (3): 456–471. https://doi.org/10.1175/1520-0434(2002)017%3C0456:ROOTMO%3E2.0.CO;2.
Burton, M., Y. F. Li, and S. Cammelli. 2015. “Wind directionality effects: Revisiting an old conundrum.” In Proc., 14th Int. Conf. on Wind Engineering, Porto Alegre, Brazil.
Candelario, J. D., T. Stathopoulos, and I. Zisis. 2014. “Wind loading on attached canopies: Codification study.” J. Struct. Eng. 140 (5): 04014007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001007.
Case, J., P. Sarkar, and S. Sritharan. 2014. “Effect of low-rise building geometry and tornado-induced loads.” J. Wind Eng. Ind. Aerodyn. 133 (Oct): 124–134. https://doi.org/10.1016/j.jweia.2014.02.001.
Catarelli, R. A., P. L. Fernandez-Caban, F. J. Masters, J. A. Bridge, C. J. Matyas, and K. R. Gurley. 2020. “Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel.” J. Wind Eng. Ind. Aerodyn. 207 (Dec): 104276. https://doi.org/10.1016/j.jweia.2020.104276.
Cermak, J. E. 1975. “Applications of fluid mechanics to wind engineering: A Freeman Scholar lecture.” J. Fluids Eng. 97 (1): 9–38. https://doi.org/10.1115/1.3447225.
Cermak, J. E. 1981. “Wind tunnel design for physical modeling of atmospheric boundary layers.” J. Eng. Mech. Div. 107 (3): 523–642. https://doi.org/10.1061/JMCEA3.0002728.
Cermak, J. E. 1982. “Physical modeling of the atmospheric boundary layer (ABL) in long boundary-layer wind tunnels (BLWT).” In Proc., Int. Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, edited by T. A. Reinhold, 97–137, Gaithersburg, MD.
Cermak, J. E. 1984. “Physical modelling of flow and dispersion over complex terrain.” Boundary-Layer Meteorol. 30 (1–4): 261–292. https://doi.org/10.1007/BF00121957.
Cermak, J. E., L. S. Cochran, and R. D. Leffler. 1993. “Wind-tunnel modelling of the atmospheric surface layer.” In Proc., 3rd Asia-Pacific Symp. on Wind Engineering, Hong Kong.
Chay, M. T., and C. W. Letchford. 2002. “Pressure distributions on a cube in a simulated thunderstorm downburst.” J. Wind Eng. Ind. Aerodyn. 90 (7): 711–732. https://doi.org/10.1016/S0167-6105(02)00158-7.
Chen, X., and A. Kareem. 2001. “Equivalent static wind loads for buffeting response of bridges.” J. Struct. Eng. 127 (12): 1467–1475. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1467).
Chen, X., and A. Kareem. 2004. “Efficacy of the implied approximation in the identification of flutter derivatives.” J. Struct. Eng. 130 (12): 2070–2074. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2070).
Chen, X., and A. Kareem. 2005. “Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes.” J. Struct. Eng. 131 (7): 1071–1082. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1071).
Chowdhury, M. J., and H. Hangan. 2018. “A hybrid approach for evaluating wind flow over a complex terrain.” J. Wind Eng. Ind. Aerodyn. 175 (Apr): 65–76. https://doi.org/10.1016/j.jweia.2018.01.037.
Cook, N. J. 1982. “Towards better estimation of extreme winds.” J. Wind Eng. Ind. Aerodyn. 9: 295–323. https://doi.org/10.1016/0167-6105(82)90021-6.
Cook, N. J. 1985. The designer’s guide to wind loading of building structures, Part I: Background, damage survey, wind data, and structural classification. London: Butterworths.
Cook, N. J. 1990. The designer’s guide to wind loading of building structures, Part II: Static structures. London: Butterworths.
Cook, N. J., and J. R. Mayne. 1979. “A novel working approach to the assessment of wind loads for equivalent static design.” J. Wind Eng. Ind. Aerodyn. 4 (2): 149–164. https://doi.org/10.1016/0167-6105(79)90043-6.
Cope, A. D., J. H. Crandell, Z. Liu, and L. Stevig. 2014. “Wind loads on fasteners used to attach flexible porous siding on multi-layer wall systems.” J. Wind Eng. Ind. Aerodyn. 133 (Oct): 150–159. https://doi.org/10.1016/j.jweia.2014.06.007.
Counihan, J. 1969. “An improved method of simulating an atmospheric boundary layer in a wind tunnel.” Atmos. Environ. 3 (2): 197–214. https://doi.org/10.1016/0004-6981(69)90008-0.
Counihan, J. 1975. “Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972.” Atmos. Environ. 9 (10): 871–905. https://doi.org/10.1016/0004-6981(75)90088-8.
Davenport, A. G. 1960. “Rationale for determining design wind velocities.” J. Struct. Div. 86: 39–68. https://doi.org/10.1061/JSDEAG.0000521.
Davenport, A. G. 1977. “The prediction of risk under wind loading.” In Proc., 2nd Int. Conf. on Structural Safety and Reliability, New York.
Davenport, A. G., N. Isyumov, J. P. C. King, M. Novak, D. Surry, and B. J. Vickery. 1985. “BLWT II: The design and performance of a new boundary layer wind tunnel.” In Proc., 5th US National Conf. on Wind Engineering, Lubbock, Texas.
Davenport, A. G., J. P. C. King, and G. L. Larose. 1992. “Taut strip model tests.” In Proc., 1st Int. Symp. on the Aerodynamics of Large Bridges, 113–124, Copenhagen, Denmark.
Drobinski, P., P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger. 2004. “The structure of the near-neutral atmospheric surface layer.” J. Atmos. Sci. 61 (6): 699–714. https://doi.org/10.1175/1520-0469(2004)061%3C0699:TSOTNA%3E2.0.CO;2.
Duthinh, D., A. L. Pintar, and E. Simiu. 2017. “Estimating peaks of stationary random processes: A peaks-over-threshold approach.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 3 (4): 04017028. https://doi.org/10.1061/AJRUA6.0000933.
Duthinh, D., A. L. Pintar, and E. Simiu. 2018. “Influence of wind tunnel test duration on wind load factors.” J. Struct. Eng. 144 (11): 06018005. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002202.
Dyunin, A. K. 1963. Solid flux of snow bearing airflow. Ottawa: National Research Council of Canada.
Etkin, B. 1971. “The interaction of precipitation with complex flows.” In Proc., 3rd Int. Conf. on Wind Effects on Buildings and Structures, 135–143, Tokyo.
ESDU (Engineering Sciences Data Unit) International. 1982. Strong winds in the atmospheric boundary layer. Part 1: Mean hourly wind speed. ESDU 82026. London: ESDU.
ESDU. 1983. Strong winds in the atmospheric boundary layer. Part 2: Discrete gust speeds. ESDU 83045. London: ESDU.
ESDU. 1993. Characteristics of atmospheric turbulence near the ground. Part II: Single point data for strong winds (neutral atmosphere). ESDU 85020. London: ESDU.
Fujita, T. T. 1983. Andrews AFB microburst. SMRP 205. Chicago: University of Chicago.
Gamble, S. L., W. K. Kochanski, and P. A. Irwin. 1991. “Finite area element snow loading prediction: Applications and advancements.” In Proc., 8th Int. Conf. on Wind Engineering, London, Ontario.
Gavanski, E., K. R. Gurley, and G. A. Kopp. 2016. “Uncertainties in the estimation of local peak pressures on low-rise buildings by using the Gumbel distribution fitting approach.” J. Struct. Eng. 142 (11): 04016106. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001556.
Gavanski, E., and G. A. Kopp. 2011. “Storm and gust duration effects on design wind loads for glass.” J. Struct. Eng. 137 (12): 1603–1610. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000397.
Georgiou, P. N. 1985. “Design windspeeds in tropical cyclone-prone regions.” Doctoral dissertation, Faculty of Engineering Science, University of Western Ontario.
Ginger, J., and C. Letchford. 1995. “Pressure factors for edge regions on low rise building roofs.” J. Wind Eng. Ind. Aerodyn. 54–55 (Feb): 337–344. https://doi.org/10.1016/0167-6105(94)00052-F.
Grimmond, C. S. B., and T. R. Oke. 1999. “Aerodynamic properties of urban areas derived from analysis of surface.” J. Appl. Meteorol. 38 (9): 1262–1292. https://doi.org/10.1175/1520-0450(1999)038%3C1262:APOUAD%3E2.0.CO;2.
Gumley, S. A. 1983. “Detailed design method for pneumatic tubing systems.” In Proc., 6th Int. Conf. on Wind Engineering, Gold Coast, Australia.
Haan, F. L. Jr. 2017. “An examination of static pressure and duration effects on tornado-induced peak pressure on a low-rise building.” Front. Built Environ. 3: 20. https://doi.org/10.3389/fbuil.2017.00020.
Haan, F. L. Jr., V. K. Balaramudu, and P. P. Sarkar. 2010. “Tornado-induced wind loads on a low-rise building.” J. Struct. Eng. 136 (1): 106–116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
Haan, F. L., P. P. Sarkar, and W. A. Gallus. 2008. “Design, construction and performance of a large tornado similar for wind engineering applications.” Eng. Struct. 30 (4): 1146–1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
Harris, R. I. 1968. On the spectrum and auto-correlation function of gustiness in high winds. Electrical Research Association.
Harris, R. I. 2009. “XIMIS, a penultimate extreme value method suitable for all types of wind climate.” J. Wind Eng. Ind. Aerodyn. 97 (5–6): 271–286. https://doi.org/10.1016/j.jweia.2009.06.011.
Harris, R. I., and D. M. Deaves. 1980. “The structure of strong winds.” In Proc., CIRA Conf. on Wind Engineering in the Eighties, London.
Helliwell, N. C. 1971. “Wind over London.” In Proc., 3rd Int. Conf. on Wind Effects on Buildings and Structures, 23–32, Tokyo.
Hellman, G. 1916. “Über die bewegung der luft in den untersten schichten der atmosphäre.” Meteorol. Z. 34: 273.
Ho, T. C. E., U. Y. Jeong, and P. Case. 2014. “Components of wind-tunnel analysis using force balance test data.” Wind Struct. 18 (4): 347–373. https://doi.org/10.12989/was.2014.18.4.347.
Ho, T. C. E., G. R. Lythe, and N. Isyumov. 1999. “Structural loads and responses from the integration of instantaneous pressures.” In Proc., 10th Int. Conf. on Wind Engineering, 1505–1510.
Ho, T. C. E., D. Surry, D. Morrish, and G. A. Kopp. 2005. “The UWO contribution to the NIST aerodynamic database for wind loads on low buildings: Part 1. Basic aerodynamic data and archiving.” J. Wind Eng. Ind. Aerodyn. 93 (1): 1–30. https://doi.org/10.1016/j.jweia.2004.07.006.
Holmes, J. D. 1979. “Mean and fluctuating internal pressures induced by wind.” In Proc., 5th Int. Conf. on Wind Engineering, Fort Collins, CO.
Holmes, J. D. 1982. “Techniques and modeling criteria for the measurement of external and internal pressures.” In Wind tunnel modeling for civil engineering applications, edited by T. A. Reinhold. New York: Cambridge University Press.
Holmes, J. D. 1987. “Mode shape corrections for dynamic response to wind.” Eng. Struct. 9 (3): 210–212. https://doi.org/10.1016/0141-0296(87)90017-4.
Holmes, J. D. 2015. “Directionality and wind-induced response: Multi-sector technique versus sector and outcrossing methods.” In Proc., 9th Windtech Wind Engineering Seminar, Sydney, Australia.
Holmes, J. D., and S. A. Bekele. 2015. “Directionality and wind-induced response—Calculation by sector methods.” In Proc., 14th Int. Conf. on Wind Engineering, Porto Alegre, Brazil.
Holmes, J. D., and R. E. Lewis. 1987. “Optimization of dynamic-pressure measurement systems. I. Single point measurements.” J. Wind Eng. Ind. Aerodyn. 25 (3): 249–273. https://doi.org/10.1016/0167-6105(87)90021-3.
Holmes, J. D., C. Miller, and M. J. Mikitiuk. 2009. “Extreme wind climatology of North Dakota—An example of storm type separation using ASOS 1-minute data.” In Proc., 11th Americas Conf. on Wind Engineering, San Juan, Puerto Rico.
Irwin, H. P. A. H., K. R. Cooper, and R. Girard. 1979. “Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures.” J. Wind Eng. Ind. Aerodyn. 5 (1–2): 93–107. https://doi.org/10.1016/0167-6105(79)90026-6.
Irwin, H. P. A. H., R. Denoon, and D. Scott. 2013. Wind tunnel testing of high-rise buildings: An output of the CTBUH wind engineering working group. Chicago: Council on Tall Building and Urban Habitat (CTBUH) and the Illinois Institute of Technology.
Irwin, P. A. 1979. “Centre of rotation for torsional vibration of bridges.” J. Wind Eng. Ind. Aerodyn. 4 (2): 123–132. https://doi.org/10.1016/0167-6105(79)90041-2.
Irwin, P. A. 1982. “Model studies of the dynamic response of tall buildings to wind.” In Proc., Canadian Soc. of Civil Engineering, Annual Conf., 285–302. Edmonton, AB.
Irwin, P. A. 1992. “Full aeroelastic model tests.” In Proc., 1st Int. Symp. on the Aerodynamics of Large Bridges, 125–135, Copenhagen, Denmark.
Irwin, P. A. 1994. “Hybrid physical/computer modelling of snow drifting.” In Proc., ASCE Special Publication on the Modeling of Windblown Snow and Sand, ASCE/ISSW Snow Science Workshop, Snowbird, UT.
Irwin, P. A. 1998. “The role of wind tunnel modeling in the prediction of wind effects on bridges.” In Proc., Int. Symp. on Advances in Bridge Aerodynamics, edited by A. Larsen and S. Esdahl, 99–117.
Irwin, P. A. 2006. “Exposure categories and transitions for design wind loads.” J. Struct. Eng. 132 (11): 1755–1763. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1755).
Irwin, P. A. 2008. “Bluff body aerodynamics in wind engineering.” J. Wind Eng. Ind. Aerodyn. 96 (6–7): 701–712. https://doi.org/10.1016/j.jweia.2007.06.008.
Irwin, P. A., and S. L. Gamble. 1988. “Prediction of snow loading on the Toronto SkyDome.” In Proc., 1st Int. Conf. on Snow Engineering, Santa Barbara, CA.
Irwin, P. A., and S. L. Gamble. 1992. “Model and computer studies of snow loading.” In Proc., Int. Congress on Innovative Large Span Structures, 381–392, Toronto.
Irwin, P. A., S. L. Gamble, and D. A. Taylor. 1995. “Effects of roof size and heat transfer on snow load: Studies for the 1995 NBC.” Canadian J. Civ. Eng. 22 (4): 770–784.
Irwin, P., J. Garber, and E. Ho. 2005. “Investigation of wind tunnel data with full scale wind climate.” In Proc., 10th Americas Conf. on Wind Engineering, Baton Rouge, LA.
Irwin, P. A., and W. W. Kochanski. 1995. “Measurement of structural wind loads using the high frequency pressure integration method.” In Proc., ASCE Structures Congress XIII, 1631–1634, Boston.
Irwin, P. A., and R. L. Wardlaw. 1979. “A wind tunnel investigation of a retractable fabric roof for the Montreal Olympic stadium.” In Proc., 5th Int. Conf. on Wind Engineering, 925–938, Fort Collins, CO.
Irwin, P. A., and C. J. Williams. 1983. “Application of snow simulation model tests to planning and design.” In Proc., Eastern Snow Conf. 28, 40th Annual Meeting, 118–130, Peterborough, ON.
Isyumov, N. 1971. “An approach to the prediction of snow loads.” Ph.D. dissertation, University of Western Ontario, Dept. of Civil and Environmental Engineering.
Isyumov, N. 1982. “The aeroelastic testing of tall buildings.” In Proc., Int. Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, 373–407, Gaithersburg, MD.
Isyumov, N., P. C. Case, T. C. E. Ho, and R. Soegiarso. 2001. “Wind tunnel model studies to predict the action of wind on the projected 558-m Jakarta Tower.” Wind Struct. 4 (4): 299–314. https://doi.org/10.12989/was.2001.4.4.299.
Isyumov, N., E. Ho, and P. C. Case. 2014. “Influence of wind directionality on wind loads and responses.” J. Wind Eng. Ind. Aerodyn. 133: 169–180. https://doi.org/10.1016/j.jweia.2014.06.006.
Isyumov, N., and M. Mikitiuk. 1992. “Wind tunnel modeling of snow accumulations on large area roofs.” In Proc., 2nd Int. Conf. on Snow Engineering, 181–193, Santa Barbara, CA.
Isyumov, N., M. J. Mikitiuk, P. C. Case, G. R. Lythe, and A. Welburn. 2003. “Predictions of wind loads and responses from simulated tropical storm passages.” In Proc., 11th Int. Conf. on Wind Engineering, 254–260, edited by D. Smith, Lubbock, Texas.
Iversen, J. D. 1982. “Small-scale modelling of snowdrift phenomena.” In Proc., Int. Workshop on Wind Tunnel Modelling Criteria in Civil Engineering Applications, 522–545, Gaithersburg, MD.
Jensen, M. 1958. “The model-law for phenomena in natural wind.” Ingeniφren 2 (2): 121–128.
Jesson, M., F. T. Lombardo, M. Sterling, and C. Baker. 2019. “The physical simulation of a transient, downburst-like event—How complex does it need to be?” J. Wind Eng. Ind. Aerodyn. 189 (Jun): 135–150. https://doi.org/10.1016/j.jweia.2019.03.021.
Jesson, M., M. Sterling., C. Letchford, and M. Haines. 2015. “Aerodynamic forces on generic buildings subject to transient, downburst-type winds.” J. Wind Eng. Ind. Aerodyn. 137 (Feb): 58–68. https://doi.org/10.1016/j.jweia.2014.12.003.
Kaimal, J. C., and J. J. Finnigan. 1994. Atmospheric boundary layer flows: Their structure and measurement. New York: Oxford University Press.
Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté. 1972. “Spectral characteristics of surface-layer turbulence.” Q. J. R. Meteorol. Soc. 98 (417): 563–589. https://doi.org/10.1002/qj.49709841707.
Kang, L., X. Zhou, and M. Gu. 2016. “A new method for predicting snowdrift on flat roofs.” In Proc., 8th Int. Conf. on Snow Engineering, 137–141, Nantes, France.
Karava, P., and T. Stathopoulos. 2007. “Wind-induced internal pressures in buildings with large façade openings.” J. Eng. Mech. 138 (4): 358–370. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000296.
Kareem, A. 1982. “Fluctuating wind loads on buildings.” J. Eng. Mech. 108 (6): 1086–1102. https://doi.org/10.1061/JMCEA3.0002892.
Kawakita, S., B. Bienkiewicz, and J. Cermak. 1992. “Aeroelastic model study of suspended cable roof.” J. Wind Eng. Ind. Aerodyn. 42 (1–3): 1459–1470. https://doi.org/10.1016/0167-6105(92)90153-2.
Kelly, M., R. A. Cersosimo, and J. Berg. 2019. “A universal wind profile for the inversion-capped neutral atmospheric boundary layer.” Q. J. R. Meteorol. Soc. 145 (720): 982–992. https://doi.org/10.1002/qj.3472.
Kilpatrick, R., H. Hangan, K. Siddiqui, D. Parvu, J. Lange, J. Mann, and J. Berg. 2016. “Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography.” Wind Energy Sci. 1 (2): 237–254. https://doi.org/10.5194/wes-1-237-2016.
Kind, R. J. 1981. “Snow drifting.” Chap. 8 in Handbook of snow: Principles, processes, management and use, edited by D. M. Gray and D. H. Male. New York: Pergamon Press.
Kind, R. J. 1982. “Aeroelastic modeling of membrane structures.” In Proc., Int. Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, 429–439, Gaithersburg, MD.
Kind, R. J. 1986. “Snowdrifting: A review of modelling methods.” Cold Reg. Sci. Technol. 12 (3): 217–228. https://doi.org/10.1016/0165-232X(86)90036-4.
Kind, R. J., and S. B. Murray. 1982. “Saltation flow measurements relating to the modeling of snow drifting.” J. Wind Eng. Ind. Aerodyn. 10 (1): 89–102. https://doi.org/10.1016/0167-6105(82)90056-3.
Kobayashi, D. 1973. Studies of snow transport in low level drifting snow. Sapporo, Japan: Institute of Low Temperature Science.
Kopp, G. A., and D. Banks. 2013. “Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays.” J. Struct. Eng. 139 (2): 284–287. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000654.
Kopp, G. A., and C.-H. Wu. 2020. “A framework to compare wind loads on low-rise buildings in tornadoes and atmospheric boundary layers.” J. Wind Eng. Ind. Aerodyn. 204 (Sep): 104269. https://doi.org/10.1016/j.jweia.2020.104269.
Kwan, K., and G. A. Kopp. 2020. “Effects of building edge curvature on wind tunnel testing of low-rise buildings.” In Proc., 9th Symp. on Bluff Body Aerodynamics and Applications, Birmingham, UK.
Kwok, K. C. S., D. H. Kim, D. J. Smedley, and H. F. Rohde. 1991. “Snowdrift around buildings for Antarctic environment.” In Proc., 8th Int. Conf. on Wind Engineering, 2797–2808, London.
Kwon, D. K., S. M. J. Spence, and A. Kareem. 2014. “A cyberbased data-enabled design framework for high-rise buildings driven by synchronously measured surface pressures.” Adv. Eng. Software 77 (Nov): 13–27.
Lee, J. J., T. M. Samaras, and C. R. Young. 2004. “Pressure measurements at the ground in an F-4 tornado.” In Proc., 22nd Conf. on Severe Local Storms, Hyannis, MA.
Lepage, M. R., and P. A. Irwin. 1985. “A technique for combining historical wind data with wind tunnel tests to predict extreme wind loads.” In Proc., 5th US National Conf. of Wind Engineering, 2B-71–2B-78, Lubbock, Texas.
Letchford, C. W. 1989. “On the discrete approximation in pneumatic averaging, Recent advances in wind engineering.” In Proc., 2nd Asia-Pacific Symp. on wind engineering, 1159–1167, Beijing.
Letchford, C. W., C. Mans, and M. T. Chay. 2002. “Thunderstorms, their importance in wind engineering—A case for the next generation wind tunnel.” J. Wind Eng. Ind. Aerodyn. 90 (12–15): 1415–1433. https://doi.org/10.1016/S0167-6105(02)00262-3.
Letchford, C. W., P. Sandri, M. C. Levitan, and K. C. Mehta. 1992. “Frequency response requirements for wind pressure measurements.” J. Wind Eng. Ind. Aerodyn. 40 (3): 263–276. https://doi.org/10.1016/0167-6105(92)90379-O.
Lettau, H. H. 1962. “Theoretical wind spirals in the boundary layer of a barotropic atmosphere.” Beiträge zur Atmosphärenphysik 35: 195–212.
Li, S., and H. P. Hong. 2015. “Observations on a hurricane wind hazard model used to map extreme hurricane wind speed.” J. Struct. Eng. 141 (10): 04014238. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001217.
Lieblein, J. 1974. Efficient methods of extreme-value methodology. Washington, DC: National Bureau of Standards.
Lin, W. E., and E. Savory. 2006. “Large-scale quasi-steady modelling of a downburst outflow using a slot jet.” Wind Struct. 9 (6): 419–440. https://doi.org/10.12989/was.2006.9.6.419.
Liu, Z. Q., T. Ishihara, T. Tanaka, and X. H. He. 2016. “LES study of turbulent flow fields over a smooth 3-D hill and a smooth 2-D ridge.” J. Wind Eng. Ind. Aerodyn. 153 (Jun): 1–12. https://doi.org/10.1016/j.jweia.2016.03.001.
Lombardo, F. T. 2017. “Engineering analysis of a full-scale high-resolution tornado wind speed record.” J. Struct. Eng. 144 (2): 04017212. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001942.
Lombardo, F. T., J. A. Main, and E. Simiu. 2009. “Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis.” J. Wind Eng. Ind. Aerodyn. 97 (3–4): 120–131. https://doi.org/10.1016/j.jweia.2009.03.001.
Lombardo, F. T., M. S. Mason, and A. Z. de Alba. 2018. “Investigation of a downburst loading event on a full-scale low-rise building.” J. Wind Eng. Ind. Aerodyn. 182 (Nov): 272–285. https://doi.org/10.1016/j.jweia.2018.09.020.
Lou, W., M. Huang, M. Zhang, and N. Lin. 2012. “Experimental and zonal modeling for wind pressures on double-skin facades of a tall building.” Energy Build. 54 (Nov): 179–191. https://doi.org/10.1016/j.enbuild.2012.06.025.
Mans, C., G. A. Kopp, and D. Surry. 2001. “The prediction of wind loads on building attachments.” In Proc., Int. Conf. on Building Envelopes Systems and Technologies, Ottawa.
Mason, M. S., D. L. James, and C. W. Letchford. 2009. “Wind pressure measurements on a cube subjected to pulsed impinging jet flow.” Wind Struct. 12 (1): 77–88. https://doi.org/10.12989/was.2009.12.1.077.
Masters, F. J., P. J. Vickery, P. Bacon, and E. N. Rappaport. 2010. “Toward objective, standardized intensity estimates from surface wind speed observations.” Bull. Am. Meteorol. Soc. 91 (12): 1665–1668. https://doi.org/10.1175/2010BAMS2942.1.
McAuliffe, B. R., and G. Larose. 2012. “Reynolds-number and surface-modeling sensitivities for experimental simulation of flow over complex topography.” J. Wind Eng. Ind. Aerodyn. 104 (May): 603–613. https://doi.org/10.1016/j.jweia.2012.03.016.
McConville, A. C., M. Sterling, and C. J. Baker. 2009. “The physical simulation of thunderstorm downbursts using an impinging jet.” Wind Struct. 12 (2): 133–149. https://doi.org/10.12989/was.2009.12.2.133.
Mellor, M. 1965. “Blowing snow.” In Cold regions science and engineering, Part III, Section A3C. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.
Meroney, R. N. 1980. “Wind-tunnel simulation of the flow over hills and complex terrain.” J. Wind Eng. Ind. Aerodyn. 5 (3–4): 297–321. https://doi.org/10.1016/0167-6105(80)90039-2.
Miller, C., G. A. Kopp, M. J. Morrison, G. Kemp, and N. Drought. 2017. “A multichamber, pressure-based test method to determine wind loads on air-permeable, multilayer cladding systems.” Front. Built Environ. 3 (Feb): 7. https://doi.org/10.3389/fbuil.2017.00007.
Minson, A. J. 1993. “Use of laser Doppler anemometer measurements near model buildings to determine wind loading on building attachments.” D.Phil. thesis, Oxford University.
Minson, A. J., R. I. Harris, and C. J. Wood. 1996. “Towards an expert system for estimating wind loads on building attachments using detailed local velocity data.” J. Wind Eng. Ind. Aerodyn. 62 (1): 11–36. https://doi.org/10.1016/S0167-6105(96)00055-4.
Minson, A. J., and C. J. Wood. 1994a. “Extreme velocities near building faces using laser Doppler anemometry.” J. Wind Eng. Ind. Aerodyn. 52 (1–3): 121–137. https://doi.org/10.1016/0167-6105(94)90043-4.
Minson, A. J., and C. J. Wood. 1994b. “The estimation of wind loads on building attachments from local velocity data.” J. Wind Eng. Ind. Aerodyn. 53 (1–2): 261–282. https://doi.org/10.1016/0167-6105(94)90030-2.
Miyata, T., K. Yokoyama, M. Yasuda, and Y. Hikami. 1992. “Akashi Kaikyo Bridge: Wind effects and full model wind tunnel tests.” In Proc., 1st Int. Symp. on the Aerodynamics of Large Bridges, 217–236, Copenhagen, Denmark.
Mohammadi, A., A. Azizinamini, L. Griffis, and P. Irwin. 2019. “Performance assessment of an existing 47-story high-rise building under extreme wind loads.” J. Struct. Eng. 145 (1): 04018232. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002239.
Novak, M., and M. Kassem. 1990. “Effect of leakage and acoustical damping of free vibration of light roofs backed by cavities.” J. Wind Eng. Ind. Aerodyn. 36 (part 1): 289–300. https://doi.org/10.1016/0167-6105(90)90313-2.
Odar, F. 1965. Simulation of drifting snow. Hanover, NH: Cold Regions Research and Engineering Laboratory.
Oh, J.-H., G. A. Kopp, and D. R. Inculet. 2007. “The UWO contribution to the NIST aerodynamic database for wind loads on low buildings: Part 3. Internal pressures.” J. Wind Eng. Ind. Aerodyn. 95 (8): 755–779. https://doi.org/10.1016/j.jweia.2007.01.007.
Olesen, H. R., S. E. Larsen, and J. Højstrup. 1984. “Modelling velocity spectra in the lower part of the planetary boundary layer.” Boundary-Layer Meteorol. 29 (3): 285–312. https://doi.org/10.1007/BF00119794.
O’Rourke, M., and N. Weitman. 1992. “Laboratory studies of snow drifts on multilevel roofs.” In Proc., 2nd Int. Conf. on Snow Engineering, 195–206, Santa Barbara, CA.
Panofsky, H. A., and J. A. Dutton. 1983. Atmospheric turbulence: Models and methods for engineering applications. New York: Wiley.
Park, S., E. Simiu, and D. Yeo. 2019. “Equivalent static wind loads vs. database-assisted design of tall buildings: An assessment.” Eng. Struct. 186 (May): 553–563. https://doi.org/10.1016/j.engstruct.2019.02.021.
Park, S., and D. Yeo. 2018. “Second-order effects on wind-induced structural behavior of high-rise steel buildings.” J. Struct. Eng. 144 (2): 04017209. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001943.
Pasquill, F., and H. E. Butler. 1964. “A note on determining the scale of turbulence.” Q. J. R. Meteorol. Soc. 90 (383): 79–84. https://doi.org/10.1002/qj.49709038308.
Paterson, D. A., and J. D. Holmes. 1993. “Computation of wind flow over topography.” J. Wind Eng. Ind. Aerodyn. 46–47 (Aug): 471–476. https://doi.org/10.1016/0167-6105(93)90314-E.
Peterka, J. 1992. “Improved extreme wind predictions in the United States.” J. Wind Eng. Ind. Aerodyn. 41 (1-3): 533–541. https://doi.org/10.1016/0167-6105(92)90459-N.
Peterka, J., and R. L. Petersen. 1990. “On the relaxation of saltation length as a modeling criteria for particulate transport.” J. Wind Eng. Ind. Aerodyn. 36 (Part 2): 867–876. https://doi.org/10.1016/0167-6105(90)90083-O.
Peterka, J., and S. Shahid. 1998. “Design gust wind speeds in the United States.” J. Struct. Eng. 124 (2): 207–214. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(207).
Peterka, J. A., and W. S. Esterday. 2004. “Roof design snow loads by wind tunnel test and analysis.” In Proc., ASCE Structures Congress 2004, Nashville, Tennessee.
Petersen, R., and J. Cermak. 1988. “Application of physical modeling for assessment of snow loading and drifting.” In Proc., 1st Int. Conf. on Snow Engineering, 276–285, Santa Barbara, CA.
Powers, J. G., J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, and D. J. Gochis. 2017. “The Weather Research and Forecasting Model: Overview, system efforts, and future directions.” Bull. Am. Meteorol. Soc. 98: 1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1.
Proctor, F. H. 1988. “Numerical simulations of an isolated microburst. Part I: Dynamics and structure.” J. Atmos. Sci. 45 (21): 3137–3160. https://doi.org/10.1175/1520-0469(1988)045%3C3137:NSOAIM%3E2.0.CO;2.
Refan, M., H. Hangan, and J. Wurman. 2014. “Simulating tornadoes in laboratory with proper scaling.” J. Wind Eng. Ind. Aerodyn. 135: 136–148. https://doi.org/10.1016/j.jweia.2014.10.008.
Reinhold, T. A., and P. J. Vickery. 1990. Variable mode shape high-frequency force balance. Washington, DC: National Science Foundation.
Roselas, M. 1983. “A novel technique for measuring spatially-averaged pressure: Its development and application to low-rise buildings.” M.S. thesis, University of Western Ontario, Dept. of Civil and Environmental Engineering.
Scanlan, R. H. 1992. “Wind dynamics of long span bridges.” In Proc., 1st Int. Symp. on the Aerodynamics of Large Bridges, 47–57, Copenhagen, Denmark.
Scanlan, R. H., and J. J. Tomko. 1971. “Airfoil and bridge deck flutter derivatives.” J. Eng. Mech. Div. 97 (6): 1717–1737. https://doi.org/10.1061/JMCEA3.0001526.
Schlichting, H. 1979. Boundary layer theory. New York: McGraw-Hill.
Schmidt, R. A. 1986. “Transport rate of drifting snow and the mean wind speed profile.” Boundary-Layer Meteorol. 34 (3): 213–241. https://doi.org/10.1007/BF00122380.
Silva, F. M., and M. G. Gomes. 2008. “Gap inner pressures in multi-storey double skin facades.” Energy Build. 40 (8): 1553–1559. https://doi.org/10.1016/j.enbuild.2008.02.014.
Simiu, E., A. L. Pintar, D. Duthinh, and D. Yeo. 2017. “Wind load factors for use in the wind tunnel procedure.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 3 (4): 04017007. https://doi.org/10.1061/AJRUA6.0000910.
Simiu, E., F. A. Potra, and T. N. Nandi. 2019. “Determining longitudinal integral turbulence scales in the near-neutral atmospheric surface layer.” Boundary-Layer Meteorol. 170: 349–355. https://doi.org/10.1007/s10546-018-0400-4.
Simiu, E., and R. H. Scanlan. 1996. Wind effects on structures: An introduction to wind engineering. 3rd ed. New York: Wiley.
Simiu, E., and D. Yeo. 2015. “Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework.” Wind Struct. 21 (5): 489–503. https://doi.org/10.12989/was.2015.21.5.489.
Simiu, E., and D. Yeo. 2019. Wind effects on structures: Modern structural design for wind. 4th ed. Hoboken, NJ: Wiley-Blackwell.
Snyder, W. H. 1981. Guidelines for fluid modeling of atmospheric diffusion. Washington, DC: US EPA.
Spence, S. M. J., and A. Kareem. 2013. “Data-enabled design and optimization (DEDOpt): Tall steel building frameworks.” Comp. Struct. 129 (12): 134–147. https://doi.org/10.1016/j.compstruc.2013.04.023.
Standen, N. M. 1972. A spire array for generating thick turbulent shear layers for natural wind simulation in wind tunnels. Ottawa: National Aeronautical Establishment.
Stathopoulos, T. 1982. “Techniques and modeling criteria for measuring area-averaged pressures.” In Wind tunnel modeling for civil engineering applications. New York: Cambridge University Press.
Stathopoulos, T., and H. D. Luchian. 1994. “Wind-induced forces on eaves of low buildings.” J. Wind Eng. Ind. Aerodyn. 52 (May): 249–261. https://doi.org/10.1016/0167-6105(94)90051-5.
Stathopoulos, T., and D. Surry. 1983. “Scale effects in wind tunnel testing of low buildings.” J. Wind Eng. Ind. Aerodyn. 13 (1–3): 313–326. https://doi.org/10.1016/0167-6105(83)90152-6.
Stathopoulos, T., D. Surry, and A. G. Davenport. 1979. “Internal pressure characteristics of low-rise buildings due to wind action.” In Proc., 5th Int. Conf. on Wind Engineering, Fort Collins, CO.
Stathopoulos, T., and X. Zhu. 1990. “Wind pressures on buildings with mullions.” J. Struct. Eng. 116 (8): 2272–2291. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:8(2272).
Steckley, A., M. Accardo, S. L. Gamble, and P. A. Irwin. 1992. “The use of integrated pressures to determine overall wind-induced response.” J. Wind Eng. Ind. Aerodyn. 42 (1–3): 1023–1034. https://doi.org/10.1016/0167-6105(92)90108-M.
Stenabaugh, S. E., Y. Iida, G. A. Kopp, and P. Karava. 2015. “Wind loads on photovoltaic arrays mounted parallel to sloped roofs on low-rise buildings.” J. Wind Eng. Ind. Aerodyn. 139 (Apr): 16–26. https://doi.org/10.1016/j.jweia.2015.01.007.
Stull, R. B. 2017. Practical meteorology: An algebra-based survey of atmospheric science. Vancouver, Canada: University of British Columbia.
Surry, D. 1982. “Consequences of distortions in the flow including mismatching scales and intensities of turbulence.” In Proc., Int. Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, Gaithersburg, MD.
Surry, D., and T. Stathopoulos. 1977. “An experimental approach to the economical measurement of spatially averaged wind loads.” J. Wind Eng. Ind. Aerodyn. 2 (4): 385–397. https://doi.org/10.1016/0167-6105(78)90021-1.
Tabler, R. 1980. “Geometry and density of drifts formed by snow fences.” J. Glaciol. 26 (94): 405–419. https://doi.org/10.3189/S0022143000010935.
Taylor, P. A., and H. W. Teunissen. 1987. “The Askervein Hill project: Overview and background data.” Boundary-Layer Meteorol. 39: 15–39. https://doi.org/10.1007/BF00121863.
Templin, J. T., and K. R. Cooper. 1980. “Design and performance of a multi-degree-of-freedom aeroelastic building model.” In Proc., 4thColloquium on Industrial Aerodynamics, 123–135, Aachen, Germany.
Templin, J. T., and W. R. Schriever. 1982. “Loads due to drifted snow.” J. Struct. Div. 108 (8): 1916–1925. https://doi.org/10.1061/JSDEAG.0006028.
Thiis, T. K., J. Potac, and J. F. Ramberg. 2009. “3D numerical simulations and full scale measurements of snow depositions on a curved roof.” In Proc., 5th European and African Conf. on Wind Engineering, Florence, Italy.
Tieleman, H. W. 1992. “Wind characteristics in the surface layer over heterogeneous terrain.” J. Wind Eng. Ind. Aerodyn. 41 (1–3): 329–340. https://doi.org/10.1016/0167-6105(92)90427-C.
Tieleman, H. W. 1995. “Universality of velocity spectra.” J. Wind Eng. Ind. Aerodyn. 56 (1): 55–70. https://doi.org/10.1016/0167-6105(94)00011-2.
Tominaga, Y., A. Mochida, T. Okaze, M. Nemoto, H. Motoyoshi, S. Nakai, et al., 2011a. “Development of a system for predicting snow distribution in built-up environments: Combining a mesoscale meteorological model and a CFD model.” J. Wind Eng. Ind. Aerodyn. 99 (4): 460–468. https://doi.org/10.1016/j.jweia.2010.12.004.
Tominaga, Y., T. Okaze, and A. Mochida. 2011b. “CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach.” Build. Environ. 46 (4): 899–910. https://doi.org/10.1016/j.buildenv.2010.10.020.
Tominaga, Y., T. Okaze, and A. Mochida. 2016. “CFD simulation of drift snow loads for an isolated gable-roof building.” In Proc., 8th Int. Conf. on Snow Engineering, 208–214, Nantes, France.
Tominaga, Y., and T. Stathopoulos. 2020. “CFD simulations can be adequate for the evaluation of snow effects on structures.” Build. Simul. 13 (2020): 729–737. https://doi.org/10.1007/s12273-020-0643-0.
Toyoda, K., and T. Tomabechi. 1992. “Development of a wind tunnel for the study of snowdrifting.” In Proc., 2nd Int. Conf. on Snow Engineering, 207–214, Santa Barbara, CA.
Tryggvason, B. V. 1979. “Aeroelastic modelling of pneumatic and tensioned fabric structures.” In Proc., 5th Int. Conf. on Wind Engineering, 1061–1072, Fort Collins, CO.
Tschanz, T. 1982. “The base balance measurement technique and applications to dynamic wind loading of structures.” Doctoral dissertation, Faculty of Engineering Science, University of Western Ontario.
Twisdale, L. A., and P. J. Vickery. 1992. “Research on thunderstorm wind design parameters.” J. Wind Eng. Ind. Aerodyn. 41 (1–3): 545–556. https://doi.org/10.1016/0167-6105(92)90461-I.
Twisdale, L. A., and P. J. Vickery. 1993. “Analysis of thunderstorm occurrences and windspeed statistics.” In Proc., 7th US National Conf. on Wind Engineering, Irvine, CA.
Vickery, B. J. 1979. “On the estimation of extreme winds in mixed climates.” In Proc., Workshop on Wind Climate, 169–188, Asheville, NC.
Vickery, B. J. 1986. “Gust-factors for internal-pressures in low rise buildings.” J. Wind Eng. Ind. Aerodyn. 23 (1–3): 259–271. https://doi.org/10.1016/0167-6105(86)90047-4.
Vickery, B. J. 1994. “Internal pressures and interactions with the building envelope.” J. Wind Eng. Ind. Aerodyn. 53 (1–2): 125–144. https://doi.org/10.1016/0167-6105(94)90022-1.
Vickery, B. J., and C. Bloxham. 1992. “Internal pressure dynamics with a dominant opening.” J. Wind Eng. Ind. Aerodyn. 41 (1–3): 193–204. https://doi.org/10.1016/0167-6105(92)90409-4.
Vickery, P. J., P. F. Skerlj, and L. A. Twisdale Jr. 2000. “Simulation of hurricane risk in the U.S. using an empirical track model.” J. Struct. Eng. 126 (10): 1222–1237. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).
Vickery, P. J., A. C. Steckley, N. Isyumov, and B. J. Vickery. 1985. “The effect of mode shape on the wind induced response of tall buildings.” In Proc., 5th US National Conf. on Wind Engineering, 1B-41–1B-48, Lubbock, Texas.
Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen. 2009a. “A hurricane boundary layer and wind field model for use in engineering applications.” J. Appl. Meteorol. Climatol. 48 (2): 381–405. https://doi.org/10.1175/2008JAMC1841.1.
Vickery, P. J., D. Wadhera, L. A. Twisdale Jr., and F. M. Lavelle. 2009b. “United States hurricane wind speed risk and uncertainty.” J. Struct. Eng. 135 (3): 301–320. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(301).
von Kármán, T. 1948. “Progress in the statistical theory of turbulence.” In Proc., National Academy of Sciences, 530–539, Washington, DC.
Whitbread, R. E. 1975. “The measurement of non-steady wind forces on small-scale building models.” In Proc., 4th Int. Conf. on Wind Effects on Buildings and Structures, 369–379, Heathrow, United Kingdom.
Wieringa, J. 1992. “Updating the Davenport roughness classification.” J. Wind Eng. Ind. Aerodyn. 42 (1–3): 357–368. https://doi.org/10.1016/0167-6105(92)90434-C.
Williams, C. J., S. L. Gamble, and W. Kochanski. 1992. “Snow load prediction in the Andes Mountains and downtown Toronto.” In Proc., 2nd Int. Conf. on Snow Engineering, 135–145, Santa Barbara, California.
Wu, C. H., and G. A. Kopp. 2018. “A quasi-steady model to account for the effects of upstream turbulence characteristics on pressure fluctuations on a low-rise building.” J. Wind Eng. Ind. Aerodyn. 179 (Aug): 338–357. https://doi.org/10.1016/j.jweia.2018.06.014.
Wuebben, J. L. 1978. A hydraulic model investigation of snow drifting. Hanover, New Hampshire: Cold Regions Research Engineering Laboratory.
Xie, J., and P. Irwin. 1998. “Application of the force balance technique to a building complex.” J. Wind Eng. Ind. Aerodyn. 77–78 (Sep): 579–590. https://doi.org/10.1016/S0167-6105(98)00174-3.
Yeo, D. 2014. “Generation of large directional wind speed data sets for estimation of wind effects with long return periods.” J. Struct. Eng. 40 (10): 04014073.
Yeo, D., and E. Simiu. 2011. “High-rise reinforced concrete structures: Database-assisted design for wind.” J. Struct. Eng. 137 (11): 1340–1349.
Yu, X., W. S. Weng, P. A. Taylor, and D. Liang. 2011. “Relaxation factor effects in the non-linear mixed spectral finite difference model of flow over topographic features.” Boundary-Layer Meteorol. 140: 23–35. https://doi.org/10.1007/s10546-011-9601-9.
Zhou, X., L. Kang, M. Gu, L. Qiu, and J. Hu. 2016. “Numerical simulation and wind tunnel test for redistribution of snow on a flat roof.” J. Wind Eng. Ind. Aerodyn. 153 (Jun): 92–105. https://doi.org/10.1016/j.jweia.2016.03.008.
Zhou, Y., and A. Kareem. 2003. “Aeroelastic balance.” J. Eng. Mech. 129 (3): 282–292. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(283).
Zilitinkevich, S. S., and I. N. Esau. 2002. “On integral measures of the neutral barotropic planetary boundary layer.” Boundary-Layer Meteorol. 104 (3): 371–379. https://doi.org/10.1023/A:1016540808958.
Zisis, I., and T. Stathopoulos. 2010. “Wind-induced pressures on patio covers.” J. Struct. Eng. 136 (9): 1172–1181. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000210.

Information & Authors

Information

Published In

Go to Wind Tunnel Testing for Buildings and Other Structures
Wind Tunnel Testing for Buildings and Other Structures
Pages: 57 - 63

History

Published online: Jul 17, 2023

Permissions

Request permissions for this article.

Authors

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share