On Tuesday, May 28, scheduled routine maintenance may cause intermittent connectivity issues which could impact e-commerce, registration, and single sign-on. Thank you for your patience.

Abstract

This chapter provides an overview of currently used and available remote sensing technologies and sensors for embankments, dams, and slopes (EDS). The application of radar-based remote sensing techniques is discussed, with an emphasis on synthetic aperture radar and interferometric synthetic aperture radar (InSAR), which has been used for the monitoring of surface displacements of EDS. Other topics explored include the use of aerial and terrestrial laser scanning for inventorying landslides, forensic analysis of slope failures, and detecting temporal changes in the geometry of slopes. Techniques are described that leverage principles of photogrammetry with digital photography and image processing to create point clouds of spatial data, create digital terrain models, and detect changes in terrain over time as indicators of possible ground movement. A new inclinometer system is presented that overcomes some of the limitations of traditional slope inclinometers developed by Stanley Wilson.

Get full access to this article

View all available purchase options and get full access to this chapter.

References

Anderssohn, J., H. U. Wetzel, T. R. Walter, M. Motagh, Y. Djamour, and H. Kaufmann. 2008. “Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: Results from InSAR and levelling.” Geophys. J. Int. 174 (1): 287–294.
Ardizzone, F., M. Cardinali, M. Galli, F. Guzzetti, and P. Reichenbach. 2007. “Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar.” Nat. Hazards Earth Syst. Sci. 7 (6): 637–650.
Ayalew, L., and H. Yamagishi. 2005. “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.” Geomorphology 65 (1–2): 15–31.
Badger, T. C. 2015. Geotechnical Report: SR 520 MP 35 to 41 Geotechnical Study. Washington, DC: US Dept. of Transportation.
Bellugi, D., D. G. Milledge, W. E. Dietrich, J. T. Perron, and J. McKean. 2015. “Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm.” J. Geophys. Res. Earth Surf. 120 (12): 2552–2585.
Berti, M., A. Corsini, and A. Daehne. 2013. “Comparative analysis of surface roughness algorithms for the identification of active landslides.” Geomorphology 182: 1–18.
Booth, A. M., J. J. Roering, and J. T. Perron. 2009. “Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon.” Geomorphology 109 (3–4): 132–147.
Bray, J. D., J. D. Frost, and E. M. Rathje. 2011. “Turning disaster into knowledge.” In Proc., Geotechnical Earthquake Engineering and Soil Dynamics V, 18–26. Reston, VA: ASCE.
Burns, W. J., S. Duplantis, C. B. Jones, and J. T. English. 2012. Lidar Data and Landslide Inventory Maps of the North Fork Siuslaw River and Big Elk Creek Watersheds, Lane, Lincoln, and Benton Counties, Oregon. Open-File Rep. No. O-12-07. Portland, OR: Oregon Dept. of Geology and Mineral Industries.
Burns, W. J., and I. Madin. 2009. Protocol for Inventory Mapping of Landslide Deposits from Light Detection and Ranging (LiDAR) Imagery, 1–30. Portland, OR: Oregon Dept. of Geology and Mineral Industries.
Carrara, A., M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, and P. Reichenbach. 1991. “GIS techniques and statistical models in evaluating landslide hazard.” Earth Surf. Process. Landf. 16 (5): 427–445.
Curlander, J., and R. McDonough. 1991. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley.
Dai, F. C., and C. F. Lee. 2002. “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.” Geomorphology 42 (3–4): 213–228.
Deschamps, R. 2017. “Emergency stabilization to maintain CN rail service.” Deep Found. Mag. 6 (6): 73–77.
Devanthéry Arasa, N. 2014. “High-resolution deformation measurement using persistent scatterer interferometry.” Doctoral thesis, Departament de Teoria del Senyal i Comunicacions, UPC.
Dietrich, W. E., J. McKean, D. Bellugi, and T. Perron. 2007. “The prediction of shallow landslide location and size using a multidimensional landslide analysis in a digital terrain model.” In Proc., 4th Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by C. L. Chen, and J. J. Major. Amsterdam, The Netherlands: IOS Press.
Duncan, J. M. 1996. “Soil slope stability analysis.” In Landslides investigation and mitigation, edited by A. K. Turner, and R. L. Schuster. Transportation Research Board Special Rep. No. 247. Washington, DC: Transportation Research Board.
Duncan, J. M., and S. G. Wright. 1980. “The accuracy of equilibrium methods of slope stability analysis.” Eng. Geol. 16 (1–2): 5–17.
Dunham, L., J. Wartman, M. J. Olsen, M. O’Banion, and K. Cunningham. 2017. “Rockfall activity index (RAI): A LiDAR-derived, morphology-based method for hazard assessment.” Eng. Geol. 221: 184–192.
Ferretti, A., C. Prati, and F. Rocca. 2001. “Permanent scatterers in SAR interferometry.” IEEE Trans. Geosci. Remote Sens. 39 (1): 8–20.
Franke, K. W., B. N. Lingwall, P. Zimmaro, R. E. Kayen, P. Tommasi, F. Chiabrando, et al. 2018. “Phased reconnaissance approach to documenting landslides following the 2016 Central Italy earthquakes.” Earthq. Spectra 34 (4): 1693–1719.
Franke, K. W., K. M. Rollins, C. Ledezma, J. D. Hedengren, D. Wolfe, S. Ruggles, et al. 2017. “Reconnaissance of two liquefaction sites using small unmanned aerial vehicles and structure from motion computer vision following the April 1, 2014 Chile earthquake.” J. Geotech. Geoenviron. Eng. 143 (5): 04016125.
Frost, J. D., and M. Turel. 2011. “Satellite, airborne and ground based imaging of earthquake damage and geotechnical hazards.” J. Highway Transp. Res. Dev. 28 (6): 41–48.
Grimm, D., and U. Hornung. 2015. “Leica ATRplus–Leistungssteigerung der automatischen Messung und Verfolgung von Prismen.” [In German.] AVN-Allg. Vermess.-Nachr. 8–9: 269–276.
Guzzetti, F., A. C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K. T. Chang. 2012. “Landslide inventory maps: New tools for an old problem.” Earth Sci. Rev. 112 (1–2): 42–66.
Hanssen, R. F. 2001. Vol. 2 of Radar interferometry: Data interpretation and error analysis. Berlin: Springer.
Hervás, J., and P. Bobrowsky. 2009. “Mapping: Inventories, susceptibility, hazard and risk.” In Landslides—Disaster Risk Reduction, edited by K. Sassa, and P. Canuti, 321–349. Berlin: Springer.
Hess, D. M., B. A. Leshchinsky, M. Bunn, H. B. Mason, and M. J. Olsen. 2017. “A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity.” Landslides 14 (5): 1677–1697.
Hirschmuller, H. 2005. “Accurate and efficient stereo processing by semi-global matching and mutual information.” In Vol. 2 of Proc., 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 807–814. Piscataway, NJ: IEEE.
Hirschmuller, H. 2008. “Stereo processing by semiglobal matching and mutual information.” IEEE Trans. Pattern Anal. Mach. Intell. 30 (2): 328–341.
Hopkinson, C., L. Chasmer, C. Gynan, C. Mahoney, and M. Sitar. 2016. “Multisensor and multispectral LiDAR characterization and classification of a forest environment.” Can. J. Remote Sens. 42 (5): 501–520.
Iverson, R. M., D. L. George, K. Allstadt, M. E. Reid, B. D. Collins, J. W. Vallance, et al. 2015. “Landslide mobility and hazards: Implications of the 2014 Oso disaster.” Earth Planet. Sci. Lett. 412: 197–208.
Jaboyedoff, M., T. Oppikofer, A. Abellán, M. H. Derron, A. Loye, R. Metzger, et al. 2012. “Use of LiDAR in landslide investigations: A review.” Nat. Hazards 61 (1): 5–28.
Jebur, M. N., B. Pradhan, and M. S. Tehrany. 2014. “Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale.” Remote Sens. Environ. 152: 150–165.
Jebur, M. N., B. Pradhan, and M. S. Tehrany. 2015. “Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia.” Geomatics Nat. Hazards Risk 6 (8): 741–759.
Kashani, A. G., M. J. Olsen, C. E. Parrish, and N. Wilson. 2015. “A review of LiDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration.” Sensors 15 (11): 28099–28128.
Kayen, R. E., K. Ishihara, J. P. Stewart, K. Tokimatsu, B. R. Cox, Y. Tanaka, et al. 2012. “Geotechnical deformations at ground failure sites from the March 11, 2011 Great Tohoku Earthquake, Japan: Field mapping, LiDAR modeling, and surface wave investigation.” In Proc., 9th Int. Conf. on Urban Earthquake Engineering/4th Asia Conf. on Earthquake Engineering, 6–8. Tokyo: Tokyo Institute of Technology.
Kayen, R., R. T. Pack, J. Bay, S. Sugimoto, and H. Tanaka. 2006. “Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake.” Earthq. Spectra 22 (S1): 147–162.
Keaton, J. R., J. Wartman, S. Anderson, J. Benoit, J. deLaChapelle, R. B. Gilbert, et al. 2014. The 22 March 2014 Oso landslide, Snohomish County, Washington. Geotechnical Extreme Event Reconnaissance Rep. No. GEER-036. Alexandria, VA: National Science Foundation.
Keyport, R. N., T. Oommen, T. R. Martha, K. S. Sajinkumar, and J. S. Gierke. 2018. “A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images.” Int. J. Appl. Earth Obs. Geoinf. 64: 1–11.
Kyokawa, H., K. Konagai, T. Kiyota, T. Katagiri, and Z. A. Kazmi. 2011. “LIDAR measurement of the breached earth-fill dam in the March 11th Great East Japan Earthquake.” In Proc., Int. Symp. on Engineering Lessons Learned from the Japan Earthquake, Kenchiku-kaikan, Japan. 973–980. https://www.geoengineer.org/publications/online-library?terms%5B0%5D=44&page=5
Lan, H., C. D. Martin, C. Zhou, and C. H. Lim. 2010. “Rockfall hazard analysis using LiDAR and spatial modeling.” Geomorphology 118 (1–2): 213–223.
Lato, M. J., M. S. Diederichs, and D. J. Hutchinson. 2010. “Bias correction for view-limited LiDAR scanning of rock outcrops for structural characterization.” Rock Mech. Rock Eng. 43 (5): 615–628.
Lato, M. J., D. J. Hutchinson, D. Gauthier, T. Edwards, and M. Ondercin. 2015. “Comparison of airborne laser scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain.” Can. Geotech. J. 52 (2): 129–140.
Lato, M., J. Hutchinson, D. Ball, and R. Harrap. 2009. “Engineering monitoring of rockfall hazards along transportation corridors: Using mobile terrestrial LiDAR.” Nat. Hazards Earth Syst. Sci. 9 (3): 935–946.
Leprince, S., F. Ayoub, Y. Klinger, and J. P. Avouac. 2007a. “Co-registration of optically sensed images and correlation (COSI-Corr): An operations methodology for ground deformation measurements.” In Proc., IEEE Int. Geoscience and Remote Sensing Symp., 1943–1946. New York: IEEE.
Leprince, S., S. Barbot, F. Ayoub, and J. P. Avouac. 2007b. “Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements.” IEEE Trans. Geosci. Remote Sens. 45 (6): 1529–1558.
Leshchinsky, B. A., M. J. Olsen, and M. Bunn. 2018. Enhancing landslide inventorying, LiDAR hazard assessment and asset management. Rep. No. FHWA-OR-RD-18-18. Salem, OR: Oregon Dept. of Transportation.
Leshchinsky, B. A., M. J. Olsen, and B. F. Tanyu. 2015. “Contour connection method for automated identification and classification of landslide deposits.” Comput. Geosci. 74: 27–38.
Li, X., X. Cheng, W. Chen, G. Chen, and S. Liu. 2015. “Identification of forested landslides using LiDAR data, object-based image analysis, and machine learning algorithms.” Remote Sens. 7 (8): 9705–9726.
Lowe, D. G. 2004. “Distinctive image features from scale-invariant keypoints.” Int. J. Comput. Vis. 60 (2): 91–110.
Lucieer, A., S. M. D. Jong, and D. Turner. 2014. “Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography.” Prog. Phys. Geogr. 38 (1): 97–116.
Mahalingam, R., and M. J. Olsen. 2016. “Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping.” Geomatics Nat. Hazards Risk 7 (6): 1835–1855.
Mahalingam, R., M. J. Olsen, and M. S. O’Banion. 2016. “Evaluation of landslide susceptibility mapping techniques using Lidar-derived conditioning factors (Oregon case study).” Geomatics Nat. Hazards Risk 7 (6): 1884–1907.
Marr, D., and H. K. Nishihara. 1978. “Representation and recognition of the spatial organization of three-dimensional shapes.” Proc. R. Soc. Lond. Ser. B 200 (1140): 269–294.
Massonnet, D., and K. L. Feigl. 1998. “Radar interferometry and its application to changes in the Earth’s surface.” Rev. Geophys. 36 (4): 441–500.
Milledge, D. G., D. Bellugi, J. A. McKean, A. L. Densmore, and W. E. Dietrich. 2014. “A multidimensional stability model for predicting shallow landslide size and shape across landscapes.” J. Geophys. Res. Earth Surf. 119 (11): 2481–2504.
Miller, D. J., and J. Sias. 1998. “Deciphering large landslides: Linking hydrological, groundwater and slope stability models through GIS.” Hydrol. Process. 12 (6): 923–941.
Niethammer, U., M. R. James, S. Rothmund, J. Travelletti, and M. Joswig. 2012. “UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results.” Eng. Geol. 128: 2–11.
Ning, Z., B. M. Hudson, and D. Brescia. 2018. “Reducing construction interference when implementing geotechnical instrumentation and monitoring in urban excavation projects.” In Proc., DFI 43th Ann. Conf. on Deep Foundations, 33–42. Hawthorne, NJ: Deep Foundations Institute.
Ning, Z., and G. Hochard. 2017. “Eyes in the heavens—Satellite technologies in remote site monitoring.” Geostrata 21 (6): 50–55
NSF (National Science Foundation). 2015. Coordination Office, Computational Modeling and Simulation Center, and Post-Disaster, Rapid Response Research Facility. Alexandria, VA: NSF.
Ohlmacher, G. C., and J. C. Davis. 2003. “Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA.” Eng. Geol. 69 (3–4): 331–343.
Olsen, M. J., S. A. Ashford, R. Mahlingam, M. Sharifi-Mood, M. O’Banion, and D. T. Gillins. 2015. Impacts of Potential Seismic Landslides on Lifeline Corridors. Rep. No. FHWA-OR-RD-15-06. Washington, DC: FHWA.
Olsen, M. J., E. Johnstone, N. Driscoll, S. A. Ashford, and F. Kuester. 2009. “Terrestrial laser scanning of extended cliff sections in dynamic environments: Parameter analysis.” J. Surv. Eng. 135 (4): 161–169.
Raber, G. T., J. R. Jensen, S. R. Schill, and K. Schuckman. 2002. “Creation of digital terrain models using an adaptive LiDAR vegetation point removal process.” Photogramm. Eng. Remote Sensing 68 (12): 1307–1314.
Rathje, E. M., and K. Franke. 2016. “Remote sensing for geotechnical earthquake reconnaissance.” Soil Dyn. Earthq. Eng. 91: 304–316.
Rosen, P. A., S. Hensley, I. R. Joughin, F. K. Li, S. N. Madsen, E. Rodriguez, et al. 2000. “Synthetic aperture radar interferometry.” Proc. IEEE 88 (3): 333–382.
Ruggles, S., J. Clark, K. W. Franke, D. Wolfe, B. Reimschiissel, R. A. Martin, et al. 2016. “Comparison of SfM computer vision point clouds of a landslide derived from multiple small UAV platforms and sensors to a TLS-based model.” J. Unmanned Veh. Syst. 4 (4): 246–265.
Schulz, W. H. 2007. “Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington.” Eng. Geol. 89 (1–2): 67–87.
Shrestha, R. L., W. E. Carter, M. Sartori, B. J. Luzum, and K. C. Slatton. 2005. “Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years.” ISPRS J. Photogramm. Remote Sens. 59 (4): 222–232.
Sithole, G., and G. Vosselman. 2004. “Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds.” ISPRS J. Photogramm. Remote Sens. 59 (1–2): 85–101.
Snavely, N., S. M. Seitz, and R. Szeliski. 2008. “Modeling the world from internet photo collections.” Int. J. Comput. Vis. 80 (2): 189–210.
Stark, T. D., and A. Baghdady. 2016. “The use of LiDAR for monitoring and assessing landslides.” In Geo-Chicago 2016: Sustainability and Resiliency in Geotechnical Engineering, Geotechnical Special Publication 269, edited by D. Zekkos, A. Farid, A. De, K. R. Reddy, and N. Yesiller, 596–604. Reston, VA: ASCE.
Stark, T. D., A. Baghdady, O. Hungr, and J. Aaron. 2017. “Closure to “Case study: Oso landslide on 22 March 2014—Material properties and failure mechanism”.” ASCE J. Geotech. Geoenviron. Eng. 144 (11): 07018031.
Stark, T. D., and H. Choi. 2008. “Slope inclinometers for landslides.” Landslides 5: 339–350.
Stempfhuber, W., and H. Kirschner. 2008. “Kinematische Leistungsfähigkeit von zielverfolgenden Tachymetern: Ein Beitrag zum Stand der Technik am Beispiel des Leica TPS1200+.” AVN-Allg. Vermess.-Nachr. 115 (6): 216–224.
Stumpf, A., J. P. Malet, N. Kerle, U. Niethammer, and S. Rothmund. 2013. “Image-based mapping of surface fissures for the investigation of landslide dynamics.” Geomorphology 186: 12–27.
Sturzenegger, M., and D. Stead. 2009. “Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts.” Eng. Geol. 106 (3–4): 163–182.
Turner, D., A. Lucieer, and S. M. de Jong. 2015. “Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV).” Remote Sens. 7 (2): 1736–1757.
van Den Eeckhaut, M., N. Kerle, J. Poesen, and J. Hervás. 2012. “Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data.” Geomorphology 173–174: 30–42.
van Den Eeckhaut, M., T. Vanwalleghem, J. Poesen, G. Govers, G. Verstraeten, and L. Vandekerckhove. 2006. “Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium).” Geomorphology 76 (3–4): 392–410.
van Puymbroeck, N., R. Michel, R. Binet, J. P. Avouac, and J. Taboury. 2000. “Measuring earthquakes from optical satellite images.” Appl. Opt. 39 (20): 3486–3494.
van Westen, C. J., E. Castellanos, and S. L. Kuriakose. 2008. “Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview.” Eng. Geol. 102 (3–4): 112–131.
van Westen, C. V., and M. J. T. Terlien. 1996. “An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia).” Earth Surf. Process. Landf. 21 (9): 853–868.
Wang, C. K., and W. D. Philpot. 2007. “Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters.” Remote Sens. Environ. 106 (1): 123–135.
Williams, K., M. Olsen, G. Roe, and C. Glennie. 2013. “Synthesis of transportation applications of mobile LiDAR.” Remote Sens. 5 (9): 4652–4692.
Wills, C. J., and T. P. McCrink. 2002. “Comparing landslide inventories: The map depends on the method.” Environ. Eng. Geosci. 8 (4): 279–293.
Xu, C., X. Xu, F. Dai, Z. Wu, H. He, F. Shi, et al. 2013. “Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China.” Nat. Hazards 68 (2): 883–900.
Zekkos, D., M. Clark, K. Cowell, W. Medwedeff, J. Manousakis, H. Saroglou, et al. 2017. “Satellite and UAV-enabled mapping of landslides caused by the November 17th 2015 Mw 6.5 Lefkada earthquake.” In Proc., 19th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 17–22. London: International Society for Soil Mechanics and Geotechnical Engineering.
Zhang, K. 2008. “Identification of gaps in mangrove forests with airborne LIDAR.” Remote Sens. Environ. 112 (5): 2309–2325.

Information & Authors

Information

Published In

Go to Remote Sensing for Monitoring Embankments, Dams, and Slopes
Remote Sensing for Monitoring Embankments, Dams, and Slopes: Recent Advances
Pages: 1 - 44
ISBN (Print): 978-0-7844-1572-6
ISBN (Online): 978-0-7844-8334-3

History

Published online: Mar 18, 2021

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Embankments, Dams, and Slopes Technical Committee

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$90.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$90.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share