Chapter
Jul 1, 2016
Chapter 24

Fermentative Biohydrogen Production from Wastewaters: An Exploration for Sustainable Green Energy

Publication: Green Technologies for Sustainable Water Management

Abstract

Biohydrogen can be made from water, either directly or indirectly, using solar driven photosynthesis and through anaerobic fermentative processes using hybrid biotechnologies. Among these processes, fermentative hydrogen production is a promising technology. This chapter describes both the scientific and practical implications of obtaining sustainable green energy through fermentative biohydrogen production. It discusses different biochemical pathways, the microbiology and biochemistry of hydrogen production, critical process parameters dictating the performance of batch and continuous bioprocesses, and modeling of biohydrogen production. Alternate modeling strategies followed to model and optimize the performance of batch and continuous biohydrogen processes use artificial neural networks (ANNs). ANNs are able to depict the interactive effects among different process variables in complicated bioprocesses. The kinetics describing biomass growth and hydrogen production provide valuable information for bioreactor design and scale-up.

Get full access to this article

View all available purchase options and get full access to this chapter.

References

Adav, S. S., Lee, D. J., Wang, A., and Ren, N. (2009). “Functional consortium for hydrogen production from cellobiose: Concentration-to-extinction approach.” Bioresour. Technol., 100(9), 2546–2550.
Alalayah, W. M., Kadhum, A. A. H., Jahim, J. M., El-Shafie, A., and Kalil, M. S. (2014). “Neural network nonlinear modeling for hydrogen production using anaerobic fermentation.” Neural Comput. Appl., 24(3–4), 539–547.
Alshiyab, H., Kalil, M. S., Hamid, A. A., and Yusoff, W. M. N. (2008). “Trace metal effects on hydrogen production using C. acetobutylicum.” Online J. Biol. Sci., 8(1), 1–9.
Antonopoulou, G., Gavala, H. N., Skiadas, I. V., and Lyberatos, G. (2010). “Influence of pH on fermentative hydrogen production from sweet sorghum extract.” Int. J. Hydrogen Energy, 35(5), 1921–1928.
Azbar, N., Dokgoz, C. F. T., Keskin, T., Korkmaz, K. S., and Syed, H. M. (2009). “Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions.” Int. J. Hydrogen Energy, 34(17), 7441–7447.
Barros, A. R., Amorim, E. L. C. D., Reis, C. M., Shida, A. R., and Silva, E. L. (2010). “Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time.” Int. J. Hydrogen Energy, 35(8), 3379–3388.
Batstone, D. J., et al. (2002). Anaerobic digestion model no. 1, IWA Publishing, London.
Belokopytov, B. F., Laurinavichius, K. S., Laurinavichene, T. V., Ghirardi, M. L., Seibert, M., and Tsygankov, A. A. (2009). “Towards the integration of dark- and photo-fermentative waste treatment. 2, Optimization of starch-dependent fermentative hydrogen production.” Int. J. Hydrogen Energy, 34(8), 3324–3332.
Bishop, C. M. (1995). Neural networks for pattern recognition, Clarendon Press, Oxford, U.K.
Boger, Z. (1992). “Application of neural networks to water and wastewater treatment plant operation.” ISA Trans., 31(1), 25–33.
Boger, Z. (2007). “Experience in the applications of artificial neural networks in bio-informatics.” Applications of statistical and machine learning methods in bioinformatics, advances in computational and system biology series, Vol. 1, Meller, and Novak, eds., Peter Lang Publishing Group, Bern, Germany.
Bouallagui, H., Lahdheb, H., Romdan, E., Rachdi, B., and Hamdi, M. (2009). “Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.” J. Environ. Manage., 90(5), 1844–1849.
Buzea, C., Pacheco, I. I., and Robbie, K. (2007). “Nanomaterials and nanoparticles: Sources and toxicity.” Biointerphases, 2(4), MR17-MR71.
Cai, M. L., Liu, J. X., and Wei, Y. S. (2004). “Enhanced biohydrogen production from sewage sludge with alkaline pretreatment.” Environ. Sci. Technol., 38(11), 3195–3202.
Chaganti, S. R., Kim, D. K., Lalman, J. A., and Shewa, W. A. (2012). “Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures.” Int. J. Hydrogen Energy, 37(16), 11710–11718.
Chang, F. Y., and Lin, C. Y. (2006). “Calcium effect on fermentative hydrogen production in an anaerobic up-flow sludge blanket system.” Water Sci. Technol., 54(9), 105–112.
Chen, C. C., and Lin, C. Y. (2003). “Using sucrose as a substrate in an anaerobic hydrogen producing reactor.” Adv. Environ. Res., 7(3), 695–699.
Chong, M. L., Rahim, R. A., Shirai, Y., and Hassan, M. A. (2009). “Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent.” Int. J. Hydrogen Energy, 34(2), 764–771.
Çinar, O., Hasar, H., and Kinaci, C. (2006). “Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network.” J. Biotechnol., 123(2), 204–209.
Cubillos, G., et al. (2010). “Simultaneous effects of pH and substrate concentration on hydrogen production by acidogenic fermentation.” Electron. J. Biotechnol., 13, 1–6.
Cui, M., Yuan, Z., Zhi, X., Wei, L., and Shen, J. (2010). “Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria.” Int. J. Hydrogen Energy, 35(10), 4010–4015.
Escudie, R., Cresson, R., Delgenes, J. P., and Bernet, N. (2011). “Control of start-up and operation of anaerobic biofilm reactors: An overview of 15 years of research.” Water Res., 45(1), 1–10.
Fang, H. H. P., and Liu, C. (2002). “Effect of pH on hydrogen production from glucose by a mixed culture.” Bioresour. Technol., 82(1), 87–93.
Fang, H. H. P., Li, C. L., and Zhang, T. (2006). “Acidophilic biohydrogen production from rice slurry.” Int. J. Hydrogen Energy, 31(6), 683–692.
Fan, Y. T., Zhang, Y. H., Zhang, S. F., Hou, H. W., and Ren, B. Z. (2006). “Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost.” Bioresour. Technol., 97(3), 500–505.
Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., and Almadid, A. (2005). “Influence of initial pH on hydrogen production from cheese whey.” J. Biotechnol., 120(4), 402–409.
Fernandes, B. S., Peixoto, G., Albrecht, F. U., del Aguila, N. K. S., and Zaiat, M. (2010). “Potential to produce biohydrogen from various wastewaters.” Energy Sustainable Dev., 14(2), 143–148.
Gadhamshetty, V., Johnson, D. C., Nirmalakhandan, N., Smith, G. B., and Deng, S. (2009). “Feasibility of biohydrogen production at low temperatures in unbuffered reactors.” Int. J. Hydrogen Energy, 34(3), 1233–1243.
Gottschalk, G. (1986). Bacterial metabolism, 2nd Ed., Springer, New York.
Gray, N. F. (2004). Biology of wastewater treatment, Imperial College Press, London.
Gujer, W., and Zehnder, A. J. B. (1983). “Conversion processes in anaerobic digestion.” Water Sci. Technol., 15, 127–167.
Guo, W. Q., et al. (2009). “Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology.” Bioresour. Technol., 100(3), 1192–1196.
Guo, X. M., Trably, E., Latrille, E., Carrere, H., and Steyer, J. P. (2010). “Hydrogen production from agricultural waste by dark fermentation: A review.” Int. J. Hydrogen Energy, 35(19), 10660–10673.
Halalsheh, M., Kassab, G., Yazajeen, H., Qumsieh, S., and Field, J. (2011). “Effect of increasing the surface area of primary sludge on anaerobic digestion at low temperature.” Bioresour. Technol., 102(2), 748–752.
Hallenbeck, P. C. (2005). “Fundamentals of the fermentative production of hydrogen.” Water Sci. Technol., 52, 21–29.
Hallenbeck, P. C. (2009). “Fermentative hydrogen production: Principles, progress and prognosis.” Int. J. Hydrogen Energy, 34(17), 7379–7389.
Hallenbeck, P. C., Abo-Hashesh, M., and Ghosh, D. (2012). “Strategies for improving biological hydrogen production.” Bioresour. Technol., 110, 1–9.
Han, H. G., Wang, L. D., and Qiao, J. F. (2013). “Efficient self-organizing multilayer neural network for nonlinear system modeling.” Neural Networks, 43, 22–32.
Hao, X., Zhou, M., Yu, H., Shen, Q., and Lei, L. (2006). “Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge.” Chin. J. Chem. Eng., 14(4), 511–517.
Hashesh, M. A., Wang, R., and Hallenbeck, P. C. (2011). “Metabolic engineering in dark fermentative hydrogen production: Theory and practice.” Bioresour. Technol., 102(18), 8414–8422.
Hassoun, M. H. (1995). Fundamentals of artificial neural networks, MIT Press.
Hawkes, F. R., Hussy, I., Kyazze, G., Dinsdale, R., and Hawkes, D. L. (2007). “Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress.” Int. J. Hydrogen Energy, 32(2), 172–184.
Haykin, S. (2008). Neural networks and learning machines, 3rd Ed., Pearson Prentice Hall, New Jersey.
Hsiao, C. L., et al. (2009). “Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles.” Int. J. Hydrogen Energy, 34(17), 7173–7181.
Hussy, I., Hawkes, F. R., Dinsdale, R., and Hawkes, D. L. (2005). “Continuous fermentative hydrogen production from sucrose and sugarbeet.” Int. J. Hydrogen Energy, 30(5), 471–483.
Hwang, J. H., et al. (2011). “Hydrogen production from sulfate- and ferrous-enriched wastewater.” Int. J. Hydrogen Energy, 36(21), 13984–13990.
Infantes, D., Campo, A. G., Villase, J., and Fernández, F. J. (2012). “Kinetic model and study of the influence of pH, temperature and undissociated acids on acidogenic fermentation.” Int. J. Hydrogen Energy, 66, 66–72.
Jaitalee, L., Dararat, S., and Chavalparit, O. (2010). “Biohydrogen production potential from market waste.” Environ. Asia, 3(2), 115–122.
Jeris, J. S., Beer, C., and Mueller, J. A. (1974). “High rate biological denitrification using a granular fluidized bed.” J. Water Pollut. Control Fed., 46, 2118–2128.
Jo, J. H., Lee, M. W., Woo, S. H., and Lee, D. S. (2011). “Prediction of biological hydrogen production in a packed-bed bioreactor using a genetically evolved artificial neural network.” J. Nanoelectron. Optoelectron., 6(3), 253–257.
Jung, K. W., Kim, D. H., and Shin, H. S. (2010). “Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor.” Int. J. Hydrogen Energy, 35(24), 13370–13378.
Karim, K., and Gupta, S. K. (2006). “Effect of shock and mixed nitrophenolic loadings on the performance of UASB reactors.” Water Res., 40(5), 935–942.
Karthic, P., Joseph, S., Arun, N., and Kumaravel, S. (2013). “Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology.” J. Renewable Sustainable Energy, 5(3), 033104.
Keskin, T., Aksoyek, E., and Azbar, N. (2011). “Comparative analysis of thermophilic immobilized biohydrogen production using packed materials of ceramic ring and pumice stone.” Int. J. Hydrogen Energy, 36(23), 15160–15167.
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., and Dawson, L. (2011). “The anaerobic digestion of solid organic waste - Review.” Waste Manage., 31(8), 1737–1744.
Kothari, R., Singh, D. P., Tyagi, V. V., and Tyagi, S. K. (2012). “Fermentative hydrogen production - An alternative clean energy source.” Renewable Sustainable Energy Rev., 16(4), 2337–2346.
Koutrouli, E. C., Gavala, H. N., Skiadas, I. V., and Lyberatos, G. (2006). “Mesophilic biohydrogen production from olive pulp.” Process Saf. Environ. Prot., 84(4), 285–289.
Kumar, N., and Das, D. (2001). “Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices.” Enzyme Microb. Technol., 29(4-5), 280–287.
Lay, C. H., Wu, J. H., Hsiao, C. L., Chang, J. J., Chen, C. C., and Lin, C. Y. (2010). “Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation.” Int. J. Hydrogen Energy, 35(24), 13445–13451.
Leano, E. P., and Babel, S. (2012). “Effects of pretreatment methods on cassava wastewater for biohydrogen production optimization.” Renewable Energy, 39(1), 339–346.
Lee, K. S., Hsu, Y. F., Lo, Y. C., Lin, P. J., Lin, C. Y., and Chang, J. S. (2008). “Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora.” Int. J. Hydrogen Energy, 33(5), 1565–1572.
Lee, Y. J., Miyahara, T., and Noike, T. (2001). “Effect of iron concentration on hydrogen fermentation.” Bioresour. Technol., 80(3), 227–231.
Lima, D. M. F., and Zaiat, M. (2012). “The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor.” Int. J. Hydrogen Energy, 37(12), 9630–9635.
Lin, C. Y., and Lay, C. (2004). “Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora.” Int. J. Hydrogen Energy, 29(1), 41–45.
Lin, C. Y., Chang, C. C., and Hung, C. H. (2008). “Fermentative hydrogen production from starch using natural mixed cultures.” Int. J. Hydrogen Energy, 33(10), 2445–2453.
Lin, C. Y., et al. (2012b). “Fermentative hydrogen production from wastewaters: A review and prognosis.” Int. J. Hydrogen Energy, 37(20), 15632–15642.
Lin, Y. H., Zheng, H. X., and Juan, M. L. (2012a). “Biohydrogen production using waste activated sludge as a substrate from fructose-processing wastewater treatment.” Process Saf. Environ. Prot., 90(3), 221–230.
Maier, H. R., and Dandy, G. C. (1998). “The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study.” Environ. Modell. Software, 13(2), 193–209.
Masters, T. (1993). Practical neural network recipes in C++, Academic Press Professional, San Diego.
Mizuno, O., Ohara, T., Shinya, M., and Noike, T. (2000). “Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora.” Water Sci. Technol., 42, 345–350.
Mosey, F. E. (1983). “Mathematical modelling of the anaerobic digestion process: Regulatory mechanisms for the formation of short-chain volatile acids from glucose.” Int. J. Hydrogen Energy, 15, 209–232.
Mullai, P. (2002). “Industrial wastewater treatment using a HUASB reactor.” Ph.D. dissertation, Annamalai Univ., Tamil Nadu.
Mullai, P., Arulselvi, S., Ngo, H. H., and Sabarathinam, P. L. (2011). “Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor.” Bioresour. Technol., 102(9), 5492–5497.
Mullai, P., Rene, E. R., and Sridevi, K. (2013c). “Biohydrogen production and kinetic modeling using sediment microorganisms of Pichavaram mangroves, India.” Bio-Med. Res. Int.
Mullai, P., Yogeswari, M. K., and Sridevi, K. (2013a). “Optimisation and enhancement of biohydrogen production using nickel nanoparticles - A novel approach.” Bioresour. Technol., 141, 212–219.
Mullai, P., Yogeswari, M. K., Sridevi, K., and Ronald Ross, P. (2013b). “Artificial neural network (ANN) modeling for hydrogen production in a continuous anaerobic sludge blanket filter (ASBF).” Int. J. Appl. Sci., 5(1), 1–7.
Mu, Y., Wang, G., and Yu, H. Q. (2006b). “Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures.” Bioresour. Technol., 97(11), 1302–1307.
Mu, Y., Zheng, X. J., Yu, H. Q., and Zhu, R. F. (2006a). “Biological hydrogen production by anaerobic sludge at various temperatures.” Int. J. Hydrogen Energy, 31(6), 780–785.
Nagase, M., and Matsuo, T. (1982). “Interactions between amino acid degrading bacteria and methanogenic bacteria in anaerobic digestion.” Biotechnol. Bioeng., 24(10), 2227–2239.
Nasr, N., Hafez, H., El Naggar, M. H., and Nakhla, G. (2013). “Application of artificial neural networks for modeling of biohydrogen production.” Int. J. Hydrogen Energy, 38(8), 3189–3195.
Ngo, T. A., Nguyen, T. H., and Bui, H. T. V. (2012). “Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359.” Renewable Energy, 37(1), 174–179.
Nicolau, J. M., Dinsdale, R., and Guwy, A. (2008). “Hydrogen production from sewage sludge using mixed microflora inoculum: Effect of pH and enzymatic pretreatment.” Bioresour. Technol., 99(14), 6325–6331.
Niessen, J., Harnisch, F., Rosenbaum, M., Schroder, U., and Scholz, F. (2006). “Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation.” Electrochem. Commun., 8(5), 869–873.
Nikhil, B. O., Visa, A., Lin, C. Y., Puhakka, J., and Harja, O. Y., (2008). “An artificial neural network based model for predicting H2 production rates in a sucrose based bioreactor system.” IJNES, 2, 80–85.
Noike, T., and Mizuno, O. (2000). “Hydrogen fermentation of organic municipal wastes.” Water Sci. Technol., 42, 155–162.
Novaes, R. F. (1986). “Microbiology of anaerobic digestion.” Int. J. Hydrogen Energy, 12, 1–14.
Ntaikou, I., Antonopoulou, G., and Lyberatos, G. (2010). “Biohydrogen production from biomass and wastes via dark fermentation: A review.” Waste Biomass Valorization, 1(1), 21–39.
Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T. (2000). “Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes.” Water Sci. Technol., 41, 25–32.
Pakarinen, O., Lehtoma, A., and Rintala, J. (2008). “Batch dark fermentative hydrogen production from grass silage: The effect of inoculum, pH, temperature and VS ratio.” Int. J. Hydrogen Energy, 33(2), 594–601.
Pandey, A., and Pandey, A. (2008). “Reverse micelles as suitable microreactor for increased biohydrogen production.” Int. J. Hydrogen Energy, 33(1), 273–278.
Parkin, G. F., and Owen, W. F. (1986). “Fundamentals of anaerobic digestion of wastewater sludges.” J. Environ. Eng., 867–920.
Peixoto, G., Saavedra, N. K., Varesche, M. B. A., and Zaiat, M. (2011). “Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor.” Int. J. Hydrogen Energy, 36(15), 8953–8966.
Poontaweegeratigarn, T., Chavadej, S., and Rangsunvigit, P. (2012). “Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature.” Int. J. Chem. Biol. Eng., 64, 444–447.
Prakasham, R. S., Sathish, T., Brahmaiah, P., Subba Rao, C. H., Sreenivas Rao, R., and Hobbs, P. J. (2009). “Biohydrogen production from renewable agri-waste blend: Optimization using mixer design.” Int. J. Hydrogen Energy, 34(15), 6143–6148.
Rene, E. R., and Saidutta, M. B. (2008). “Prediction of water quality indices by regression analysis and artificial neural networks.” Int. J. Environ. Res., 2, 183–188.
Rene, E. R., López, M. E., Veiga, M. C., and Kennes, C. (2011a). “Neural network models for biological waste-gas treatment systems.” New Biotechnol., 29(1), 56–73.
Rene, E. R., López, M. E., Veiga, M. C., and Kennes, C. (2011b). “Artificial neural network modelling for waste: Gas and wastewater treatment applications.” Computational modeling and simulation of intellect: Current state and future perspectives, B. Igelnik, ed., IGI Global Publishers.
Rene, E. R., Maliyekkal, S. M., Philip, L., and Swaminathan, T. (2006). “Back-propagation neural network for performance prediction in trickling bed air biofilter.” Int. J. Environ. Pollut., 28(3), 382–401.
Ren, N., Wang, A., Cao, G., Xu, J., and Gao, L. (2009b). “Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges.” Biotechnol. Adv., 27(6), 1051–1060.
Ren, Y., Wang, J., Liu, Z., Ren, Y., and Li, G. (2009a). “Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes.” Renewable Energy, 34(12), 2774–2779.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal representations by error propagation.” Parallel distributed processing. explorations in the microstructure of cognition, Vol. 1, D. E. Rumelhart, and J. L. McClelland, eds., MIT Press, Cambridge.
Sabry, T. (2008). “Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads.” Bioresour. Technol., 99(10), 4073–4077.
Schink, B. (1997). “Energetics of syntrophic cooperation in methanogenic degradation.” Microbiol. Mol. Biol. Rev., 61, 262–280.
Shi, X. Y., Jin, D. W., Sun, Q. Y., and Li, W. W. (2010a). “Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach.” Renewable Energy, 35(7), 1493–1498.
Shi, Y., Gai, G., Zhao, X., Zhu, J., and Zhang, P. (2010b). “Back propagation neural network (BPNN) simulation model and influence of operational parameters on hydrogen bio-production through integrative biological reactor (IBR) treating wastewater.” College of Power and Energy Engineering, Harbin Engineering Univ., China.
Show, K. Y., et al. (2010). “Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater.” Int. J. Hydrogen Energy, 35(24), 13350–13355.
Show, K. Y., Zhang, Z. P., and Lee, D. J. (2008). “Design of bioreactors for biohydrogen production.” J. Sci. Ind. Res., 67, 941–949.
Sinha, P., and Pandey, A. (2011). “An evaluative report and challenges for fermentative biohydrogen production.” Int. J. Hydrogen Energy, 36(13), 7460–7478.
Sivaramakrishna, D., Sreekanth, D., Himabindu, V., and Anjaneyulu, Y. (2009). “Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora.” Renewable Energy, 34(3), 937–940.
Sudha, K., and Mullai, P. (2010). “Biohydrogen production using anaerobic hybrid reactor (AHR).” Int. J. Chem. Sci., 8, 527–534.
Tang, G. L., Huang, J., Sun, Z. J., Tang, Q. Q., Yan, C. H., and Liu, G. Q. (2008). “Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: Influence of fermentation temperature and pH.” J. Biosci. Bioeng., 106(1), 80–87.
Tao, Y., Chen, Y., Wu, Y., He, Y., and Zhou, Z. (2007). “High hydrogen yield from two-step process of dark- and photo-fermentation of sucrose.” Int. J. Hydrogen Energy, 32(2), 200–206.
Thanwised, P., Wirojanagud, W., and Reungsang, A. (2012). “Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR).” Int. J. Hydrogen Energy, 37(20), 15503–15510.
Tilche, A., and Vieira, S. M. M. (1991). “Discussion report on reactor design of anaerobic filters and sludge bed reactors.” Water Sci. Technol., 24, 193–206.
Ueno, Y., Otsuka, S., and Morimoto, M. (1996). “Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture.” J. Ferment. Bioeng., 82(2), 194–197.
Van Ginkel, S. W., and Logan, B. E. (2005). “Increased biological hydrogen production with reduced organic loading.” Water Res., 39(16), 3819–3826.
Van Ginkel, S. W., Oh, S. E., and Logan, B. E. (2005). “Biohydrogen gas production from food processing and domestic wastewaters.” Int. J. Hydrogen Energy, 30(15), 1535–1542.
Vatsala, T. M., Mohan Raj, S., and Manimaran, A. (2008). “A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture.” Int. J. Hydrogen Energy, 33(20), 5404–5415.
Vazquez, G. D., Arriaga, S., Mondragon, F. A., Rodriguez, A. D. L., Colunga, L. M. R., and Flores, E. R. (2008). “Fermentative biohydrogen production: Trends and perspectives.” Rev. Environ. Sci. Biotechnol., 7(1), 27–45.
Vazquez, I. V., and Varaldo, H. M. (2009). “Fermentative hydrogen production by fermentative consortia.” Renewable Sustainable Energy Rev., 13(5), 1000–1013.
Venetsaneas, N., Stamatelatou, G. A. K., Kornaros, M., and Lyberatos, M. (2009). “Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches.” Bioresour. Technol., 100(15), 3713–3717.
Venkatamohan, S., Lalit Babu, V., and Sarma, P. N. (2008a). “Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate.” Bioresour. Technol., 99(1), 59–67.
Venkatamohan, S., Mohanakrishna, G., Ramanaiah, S. V., and Sarma, P. N. (2008b). “Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater.” Int. J. Hydrogen Energy, 33(2), 550–558.
Venkatamohan, S., Vijayabhaskar, Y., and Sarma, P. N. (2007). “Hydrogen production from chemical wastewater treatment in bio-film configured reactor operated in periodic continuous batch mode by selectively enriched anaerobic mixed consortia.” Int. J. Hydrogen Energy, 41, 2652–2664.
Vrije, T. D., de Haas, G. G., Tan, G. B., Keijsers, E. R. P., and Claassen, P. A. M. (2002). “Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii.” Int. J. Hydrogen Energy, 27(11–12), 1381–1390.
Wang, J., and Wan, W. (2008a). “Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures production by mixed cultures.” Int. J. Hydrogen Energy, 33(4), 1215–1220.
Wang, J., and Wan, W. (2008b). “Influence of Ni2+ concentration on biohydrogen production.” Bioresour. Technol., 99(18), 8864–8868.
Wang, J., and Wan, W. (2009a). “Factors influencing fermentative hydrogen production: A review.” Int. J. Hydrogen Energy, 34(2), 799–811.
Wang, J. and Wan, W. (2009b). “Kinetic models for fermentative hydrogen production: A review.” Int. J. Hydrogen Energy, 34(8), 3313–3323.
Wang, J., and Wan, W. (2009c). “Application of desirability function based on neural network for optimizing biohydrogen production process.” Int. J. Hydrogen Energy, 34(3), 1253–1259.
Wang, Y., Wang, H., Feng, X., Wang, X., and Huang, J. (2010). “Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge.” Int. J. Hydrogen Energy, 35(7), 3092–3099.
Wicher, E., Seifert, K., Zagrodnik, R., Pietrzyk, B., and Laniecki, M. (2013). “Hydrogen gas production from distillery wastewater by dark fermentation.” Int. J. Hydrogen Energy, 38(19), 7767–7773.
Wu, J. H., and Lin, C. Y. (2004). “Biohydrogen production by mesophillic fermentation of food wastewater.” Water Sci. Technol., 49, 223–228.
Wu, K. J., Chang, C. F., and Chang, J. S. (2007). “Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge.” Process Biochem., 42(7), 1165–1171.
Yang, H., and Shen, J. (2006). “Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch.” Int. J. Hydrogen Energy, 31(15), 2137–2146.
Yang, H., et al. (2006). “Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria.” Int. J. Hydrogen Energy, 31(10), 1306–1313.
Yang, P., Zhang, R., McGarvey, J. A., and Benemann, J. R. (2007). “Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities.” Int. J. Hydrogen Energy, 32(18), 4761–4771.
Yasin, H. N. M., Rahman, A. N. A., Man, H. C., Yuosff, M. Z. M., and Hassan, M. A. (2011). “Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values.” Int. J. Hydrogen Energy, 36(16), 9571–9580.
Yogeswari, M. K. (2013). “Hydrogen production using confectionery wastewater by dark fermentation.” Ph.D. thesis, Annamalai Univ., Tamil Nadu.
Yogeswari, M. K., Ronald Ross, P., and Mullai, P. (2013). “Dark fermentative hydrogen production in an anaerobic sludge blanket filter (ASBF) using synthetic wastewater.” Int. J. Rev. Res. Appl. Sci. Eng., 3(4), 34–41.
Yokoi, H., Maki, R., Hirose, J., and Hayashi, S. (2002). “Microbial production of hydrogen from starch-manufacturing wastes.” Biomass Bioenergy, 22(5), 389–395.
Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., and Takasaki, Y. (2001). “Microbial hydrogen production from sweet potato starch residue.” J. Biosci. Bioeng., 91(1), 58–63.
Yu, H., Zhu, Z., Hu, W., and Zhang, H. (2002). “Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures.” Int. J. Hydrogen Energy, 27(11–12), 1359–1365.
Zhang, Y., and Shen, J. (2007). “Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater.” Int. J. Hydrogen Energy, 32(1), 17–23.
Zhang, Y. F., Liu, G. Z., and Shen, J. (2005). “Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations.” Int. J. Hydrogen Energy, 30(8), 855–860.
Zhang, Z. P., et al. (2007). “Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor.” Int. J. Hydrogen Energy, 32(2), 185–191.
Zhao, W., et al. (2011). “Anaerobic biohydrogen production by the mixed culture with mesoporous Fe3O4 nanoparticles activation.” Adv. Mater. Res., 306–307, 1528–1531.
Zhi, X. H., Yang, H. J., Yuan, Z. L., and Shen, J. (2008). “Bio-hydrogen production of anaerobic bacteria in reverse micelles media.” Int. J. Hydrogen Energy, 33(18), 4747–4754.
Zhi, X., Yang, H., Yuan, H., and Shen, J. (2010). “Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles.” Int. J. Hydrogen Energy, 35(7), 2926–2930.
Zhu, G. F., Li, J. Z., and Liu, C. X. (2012). “Fermentative hydrogen production from soybean protein processing wastewater in an anaerobic baffled reactor (ABR) using anaerobic mixed consortia.” Appl. Biochem. Biotechnol., 168(1), 91–105.
Zhu, G., Ji, C. L., Ren, N., Liu, L. and Huang, X. (2013). “Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia.” Front. Environ. Sci. Eng., 7(1), 143–150.

Information & Authors

Information

Published In

Go to Green Technologies for Sustainable Water Management
Green Technologies for Sustainable Water Management
Pages: 829 - 865

History

Published online: Jul 1, 2016

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

P. Mullai
Annamalai Univ., Tamil Nadu, India
M. K. Yogeswari
Annamalai Univ., Tamil Nadu, India
M. Estefanía López
Univ. of La Coruña, Spain
Eldon R. Rene
UNESCO-IHE, Delft, Netherlands

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$225.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share