Chapter
Nov 12, 2013

Carbon Sequestration by Roadside Filter Strips and Swales: A Field Study

Publication: Green Streets, Highways, and Development 2013: Advancing the Practice

Abstract

As legislation continues to focus on greenhouse gas (GHG) and carbon dioxide (CO2) emissions and reductions, the terrestrial biome offers an attractive possibility to sequester carbon. Currently, the terrestrial pool is regarded as a CO2 sink, but scientists are unsure to what extent this trend will continue. Urbanization modifies the existing landscape, and little study has focused on the carbon (C) dynamics of specific urban land uses. In this research, the roadway environment, specifically the grassed right of way (ROW), was studied for carbon sequestration potential, an important ecosystem service. Transportation corridors exist worldwide, and the vegetated filter strip and swale (VFS/VS), two common stormwater control measures (SCMs), often constitute the grassed right of way adjacent to roadways. Carbon pools within roadway VFS/VS soils of North Carolina were specifically examined in this study. This research was conducted in two North Carolina physiographic regions: the Piedmont (characterized by clay-influenced soils) and the Coastal Plain (predominantly sandy soils). Approximately 700 soil samples were collected in VFS/VSs and wetland swales alongside major highways and analyzed for percent total soil C (% total C) and bulk density, which aided in obtaining the C density. Mean soil C densities were 2.55 ± 0.13 kg C m-2 (mean ± standard error, n=160, 0.2 m depth) in the Piedmont and 4.14 ± 0.15 kg C m-2 (n=160, 0.2 m depth) in Coastal Plain highway VFS/VSs. Because grasslands were reported to have similar carbon density values, they could be used as a surrogate land use for roadway VFS/VSs if no specific roadside data were available. Using a 37-year soil chronosequence, the carbon sequestration rate using a simple linear regression within Piedmont VFS/VSs was calculated at 0.053 kg C m-2 yr-1. Utilizing segmented linear regression models, the sequestration rate was calculated to be 0.155 kg C m-2 yr-1 for 15 years and 0.099 kg C m-2 yr-1 for the remaining 21.5 years. The roadside grass sequestration rate assumed by the Federal Highway Administration Carbon Sequestration Pilot Program (0.17 kg C m-2 yr-1) overestimates carbon accumulation by a factor of 3 in the linear model, and by a factor of 1.1 to 1.7 with the segmented linear models. Carbon density did not differ between dry and wetland swales, although % total C was significantly greater in wetland swales. Because C density and % total C in swales were not well defined by age, it appeared more appropriate to assess wetland swales and dry swales using a range of carbon values, rather than a rate of carbon sequestration. The mean VS C density was 3.05 ± 0.13 kg C m-2 (n=40, 0.2 m depth), while that for wetland swales was 5.04 ± 0.73 kg C m-2 (n=44, 0.2 m depth). If promoting C sequestration becomes a factor in ROW management, wetland swales would be more desirable than dry swales. While the VFS/VS sequestration rate is comparable to other grassed systems, the estimated 320-480 tons C per lane-mile expelled during roadway construction (Cass and Mukherjee 2011) is marginally offset through terrestrial sequestration in roadside VFS/VSs. Per kilometer of roadway constructed, Piedmont VFS/VSs would offset between 4% and 7% of C emitted during construction, depending on predictive model of C sequestration rate was used.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Green Streets, Highways, and Development 2013
Green Streets, Highways, and Development 2013: Advancing the Practice
Pages: 355 - 367

History

Published online: Nov 12, 2013

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

R. J. Winston [email protected]
Department of Biological and Agricultural Engineering, North Carolina State University, Campus Box 7625, Raleigh, NC 27695-7625. E-mail: [email protected]
N. R. Bouchard [email protected]
Altamont Environmental, Inc. 231 Haywood Street, Asheville, NC 28801. E-mail: [email protected]
Department of Biological and Agricultural Engineering, North Carolina State University, Campus Box 7625, Raleigh, NC 27695-7625. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share