Chapter
Nov 12, 2013

A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils

Publication: IACGE 2013: Challenges and Recent Advances in Geotechnical and Seismic Research and Practices

Abstract

It is well established that soils exhibit non-linear behavior even at small strain levels. Yet, most evaluations of the seismic response of soil deposits utilize an equivalent linear methodology, i.e. elastic solutions incorporating constant damping. In such solutions the modulus and damping constants are adjusted by means of an iterative approach to correlate to the maximum strain. In doing so, the smaller amplitude, high-frequency component motions are forced to use the same modulus degradation and damping as that of the lower frequency motions. As a consequence, the computed motions at the surface of a deposit often exhibit unrealistic low amplitudes at high frequencies when the strong input motions are applied. This article presents a modified Kelvin model, in which the modulus and damping are treated as loading history dependent coefficients for each loading-unloading branch. This model works in the program FLAC in a time domain integration procedure. Based on the peak strain level experienced in the previous half cycle, the modulus degradation and viscosity are updated for the current branch. Numerical analyses for a soft soil site are presented and compared with those obtained using the equivalent linear method implemented in the program SHAKE for a recorded motion at Treasure Island. The site response analysis of another soft clay site for a higher design input motion shows that the computed PGA and response spectral could be higher than those obtained from a typical equivalent linear analysis.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to IACGE 2013
IACGE 2013: Challenges and Recent Advances in Geotechnical and Seismic Research and Practices
Pages: 231 - 240

History

Published online: Nov 12, 2013

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Zhiliang Wang [email protected]
Senior Associate, AMEC Environment & Infrastructure, Inc., Oakland, CA 94612. E-mail: [email protected]
Fenggang Ma
Environmental Engineer, Washington State Dept. of Ecology, Dam Safety Office, Spokane, WA 99205

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share