Chapter
Jul 8, 2013

Integrating Genetic Programming and Agent-based Modeling to Identify Sensor-based Rules for Flushing Contaminated Water from a Pipe Network

Publication: World Environmental and Water Resources Congress 2013: Showcasing the Future

Abstract

A utility manager may become aware of a threat of contamination to a water distribution network through water quality sensor information, which may indicate that a biological pathogen or chemical contaminant was introduced to the network. In response, a utility manager can select a set of hydrants to flush contaminant from the network. As an event unfolds, a decision maker may not be able to ascertain source characteristics, creating additional difficulties in determining the set of hydrants that should be opened. The research presented here develops a Genetic Programming (GP)-based approach to identify a set of response actions that are based on sensor information, instead of source characteristics, for guiding selection of hydrants. GP is a method within the class of evolutionary computation, and a solution is represented as a combination of values and symbols to represent a computer program for executing computations, such as a mathematical equation. GP is developed in this research to program a list of rules for opening and closing hydrants that will effectively protect public health for an ensemble of contamination events. An ensemble of contamination events is developed based on a set of similar activated sensors. As the public health effects of a contamination event are influenced by a set of complex interactions among consumers, utility operators, and the pipe network, an agent-based modeling framework is used to predict the dynamic location of a contaminant plume during a contamination event and the number of exposed consumers. To identify optimal hydrant strategies to flush a contaminant while considering the complexity of interactions in the system, a simulation-optimization model couples agent-based modeling with GP. Multiple contamination scenarios are modeled to evaluate potential solutions, and the simulation-optimization framework is demonstrated for a virtual mid-sized municipality, Mesopolis.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2013
World Environmental and Water Resources Congress 2013: Showcasing the Future
Pages: 784 - 790

History

Published online: Jul 8, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share