Chapter
Jul 11, 2012

Finite Element Modeling of Tall Buildings: The Importance of Considering Foundation Systems for Lateral Stiffness

Publication: 20th Analysis and Computation Specialty Conference

Abstract

Structural analysis and design is often conducted under the assumption of rigid base boundary conditions, particularly if the foundation system extends to bedrock, though the extent to which the actual flexibility of the soil-foundation system affects the predicted periods of vibration depends on the application. While soil-structure interaction has mostly received attention in seismic applications, lateral flexibility below the ground surface may in some cases influence the dynamic properties of tall, flexible structures, generally greater than 50 stories and dominated by wind loads. This study will explore this issue and develop a hybrid framework within which these effects can be captured and eventually be applied to existing finite element models of two tall buildings in the Chicago Full-Scale Monitoring Program. It is hypothesized that the extent to which the rigid base condition assumption applies in these buildings depends on the relative role of cantilever and frame actions in their structural systems. In this hybrid approach, the lateral and axial flexibility of the foundation systems are first determined in isolation and then introduced to the existing finite element models of the buildings as springs, replacing the rigid boundary conditions assumed by designers in the original finite element model development. The evaluation of the periods predicted by this hybrid framework, validated against companion studies and full-scale data, are used to quantify the sensitivity of foundation modeling to the super-structural system primary deformation mechanisms and soil type. Not only will this study demonstrate the viability of this hybrid approach, but also illustrate situations under which foundation flexibility in various degrees of freedom should be considered in the modeling process.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to 20th Analysis and Computation Specialty Conference
20th Analysis and Computation Specialty Conference
Pages: 207 - 218

History

Published online: Jul 11, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Audrey Bentz [email protected]
DYNAMO Laboratory, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. E-mail: [email protected]
Tracy Kijewski-Correa [email protected]
DYNAMO Laboratory, University of Notre Dame, 162 Fitzpatrick Hall, Notre Dame, IN 46556. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share