Chapter
Jul 11, 2012

Seismic Performance of RC Moment Resisting Frame with Steel, GFRP, and SMAFRP Reinforcement

Publication: Structures Congress 2012

Abstract

For the last century, steel has been used as a reinforcing material for most of the reinforced civil engineering structures. Despite requisite stiffness, strength, ductility and serviceability properties, steel reinforcing bars have shown deterioration over time due to corrosion. Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as alternate to conventional steel reinforcement, in order to overcome corrosion problems. However, due to their linear elastic behavior, they are not considered in structures which require ductility and damping characteristics. The use of shape memory alloys (SMAs) with their nonlinear super-elastic behavior in the composite could potentially provide solution for this problem. Small diameter super-elastic SMA wires, coupled with polymer matrix and FRP is sought in this research as reinforcing bars in reinforced concrete (RC) moment resisting frames (MRFs) to improve the performance of the frames in terms of reduced residual inter-storey drifts and damage under quasi-static and seismic loading, while still maintaining the elastic characteristics associated with FRP. The new SMA-FRP composite reinforcement is placed at the plastic hinge region of the MRFs, where the nonlinearity is expected to accumulate. A three storey one bay RC MRF prototype structure is designed with steel reinforcement using equivalent static force procedure given in International Building Code (IBC) for particular seismic hazard. The RC MRF is then modified by replacing steel at the plastic hinge region in the beams with conventional Glass-FRP (GFRP) and SMA-FRP composite reinforcement using design acceleration response spectra achieved based on seismic demand. Incremental dynamic analysis is conducted to investigate the behaviors of the frame with the three different reinforcement types under a suite of ground motion records. From this study, it is found that the frame with SMA-FRP composite reinforcement exhibits higher performance levels including lower residual inter-storey drifts, high energy dissipation to residual drifts ratio and thus lower damage, which is of essence for the structures in high seismic zones.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Structures Congress 2012
Structures Congress 2012
Pages: 2003 - 2014

History

Published online: Jul 11, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Adeel Zafar [email protected]
Graduate Research Assistant, Dept. of Civil Engineering, University of Illinois at Urbana-Champaign, USA.E-mail: [email protected]
Bassem Andrawes [email protected]
A.M.ASCE
Assistant Professor, Dept. of Civil Engineering, University of Illinois at Urbana-Champaign, USA.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share