Chapter
Jul 11, 2012

Rover Mobility on Granular Soil: Marrying Multi-Scale Modeling and High Fidelity Experiments to Infer Soil Stresses under the Moving Wheel

Publication: Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments

Abstract

In this work, we show how high resolution imaging coupled with a novel physics-based computational framework can provide a rich description of regolith-structure interactions, using the rover mobility in soft soil as a challenging canonical problem. The images of soil deformation under a rolling wheel were collected at 7 Hz resolution in time and 0.19 mm per pixel in space, with the camera approximately following the wheel motion. The soil under the wheel is a lunar simulant GRC-1. Image correlation (optical flow) was used to infer material velocities, i.e. regolith kinematics, at near-grain scale. From this data, strains can be calculated during post-processing, but stresses are beyond the reach of experimental measurements. Here we present a method to infer material stresses under the rolling wheel using a multiscale framework with a simple Drucker-Prager material description. From a purely computational standpoint, this mobility problem is extremely challenging involving wheel-regolith contact and interacting localization bands on the material scale, as indicated by the experiments. Capturing these features with the correct constitutive description is at the very cutting edge of computational research today. We bypass some of the aforementioned difficulties by inferring from experimental images a key plastic internal variable, the dilatancy, which is known to control strength and softening in dilative granular materials, and use its evolution directly in multi-scale computations. The method successfully marries experiments and computations in order to quantify material stresses under the wheel, which at present are beyond the reach of either method alone. From a practical standpoint, an understanding of the material stress state is helpful for several reasons, perhaps the chief of which is that stress distributions serve as input into reduced-order mobility models, e.g. Bekker-Wong terramechanics expressions.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Earth and Space 2012
Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments
Pages: 250 - 255

History

Published online: Jul 11, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

I. Vlahinic [email protected]
Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91127. E-mail: [email protected]
Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91127. E-mail: [email protected]
K. Skonieczny [email protected]
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburg, PA 15213. E-mail: [email protected]
S. Moreland [email protected]
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburg, PA 15213. E-mail: [email protected]
D. Wettergreen [email protected]
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburg, PA 15213. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share