Chapter
May 9, 2013
Chapter 3

Nanotechnostructured Catalysts TiO2 Nanoparticles for Water Purification

Publication: Nanotechnologies for Water Environment Applications
First page of PDF

Get full access to this article

View all available purchase options and get full access to this chapter.

3.7 References

Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J. (2006). “Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.” Water Research, 40(19), 3527–3532.
Ahmed, S., Kemp, T. J., and Unwin, P. R. (2001). “Photomineralisation kinetics of aqueous chlorophenols at a supported TiO2 surface studied by the channel-flow method with electrochemical detection.” Journal of Photochemistry and Photobiology A-Chemistry, 141(1), 69–78.
Alberici, R. M., and Jardim, W. F. (1994). “Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO2 in a slurry reactor.” Water Research, 28(8), 1845–1849.
Alekabi, H., Serpone, N., Pelizzetti, E., Minero, C., Fox, M. A., and Draper, R. B. (1989). “Kinetic-studies in heterogeneous photocatalysis .2. TiO2-mediated degradation of 4-chlorophenol alone and in a 3-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous-media.” Langmuir, 5(1), 250–255.
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y. (1987). “Photocatalytic hydrogenation of CH3COOH with H2O on small-particle TiO2 - size quantization effects and reaction intermediates.” J. Phys. Chem., 91(16), 4305–4310.
Arabatzis, I. M., Spyrellis, N., Loizos, Z., and Falaras, P. (2005). “Design and theoretical study of a packed bed photoreactor.” Journal of Materials Processing Technology, 161(1–2), 224–228.
Arias, A. N. A., Martinez, M. A., Zurita, G. F., and de Correa, C. M. (2007). “Liquid-phase catalytic hydrodechlorination of perchloroethylene.” Revista Facultad De Ingenieria-Universidad De Antioquia (42), 132–147.
Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A. J. (2000). “Electronic and optical properties of anatase TiO2.” Phys. Rev. B., 61(11), 7459–7465.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001). “Visible-light photocatalysis in nitrogen-doped titanium oxides.” Science, 293(5528), 269–271.
Augugliaro, V., Baiocchi, C., Prevot, A. B., Garcia-Lopez, E., Loddo, V., Malato, S., Marci, G., Palmisano, L., Pazzi, M., and Pramauro, E. (2002). “Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation.” Chemosphere, 49(10), 1223–1230.
Bandara, J., Mielczarski, J. A., and Kiwi, J. (1999). “1. Molecular mechanism of surface recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes.” Langmuir, 15(22), 7670–7679.
Barakat, M. A., Schaeffer, H., Hayes, G., and Ismat-Shah, S. (2005). “Photocatalytic degradation of 2-chlorophenol by co-doped TiO2 nanoparticles.” Applied Catalysis B-Environmental, 57(1), 23–30.
Belessi, V., Lambropoulou, D., Konstantinou, I., Katsoulidis, A., Pomonis, P., Petridis, D., and Albanis, T. (2007). “Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor.” Applied Catalysis B-Environmental, 73(3–4), 292–299.
Bellobono, I. R., Carrara, A., Barni, B., and Gazzotti, A. (1994). “Laboratory-scale and pilot-plant-scale photodegradation of chloroaliphatics in aqueous-solution by photocatalytic membranes immobilizing titanium-dioxide.” Journal of Photochemistry and Photobiology A-Chemistry, 84(1), 83–90.
Bhatkhande, D. S., Pangarkar, V. G., and Beenackers, A. A. C. M. (2002). “Photocatalytic degradation for environmental applications - a review.” Journal of Chemical Technology and Biotechnology, 77(1), 102–116.
Bhatkhande, D. S., Sawant, S. B., Schouten, J. C., and Pangarkar, V. G. (2004). “Photocatalytic degradation of chlorobenzene using solar and artificial UV radiation.” Journal of Chemical Technology and Biotechnology, 79(4), 354–360.
Biard, P. F., Bouzaza, A., and Wolbert, D. (2007a). “Photocatalytic degradation of two volatile fatty acids in an annular plug-flow reactor: kinetic modeling and contribution of mass transfer rate.” Environmental Science Technology, 41(8), 2908–2914.
Biard, P. F., Bouzaza, A., and Wolbert, D. (2007b). “Photocatalytic degradation of two volatile fatty acids in monocomponent and multicomponent systems: comparison between batch and annular photoreactors.” Applied Catalysis B-Environmental, 74(3–4), 187–196.
Bikondoa, O., Pang, C. L., Ithnin, R., Muryn, C. A., Onishi, H., and Thornton, G. (2006). “Direct visualization of defect-mediated dissociation of water on TiO2 (110).” Nature Materials, 5(3), 189–192.
Blake, D. M. (2001). “Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air.” N. R. E. Laboratory, ed.
Blanco, J., Malato, S., Fernandez, P., Vidal, A., Morales, A., Trincado, P., Oliveira, J. C., Minero, C., Musci, M., Casalle, C., Brunotte, M., Tratzky, S., Dischinger, N., Funken, K. H., Sattler, C., Vincent, M., Collares-Pereira, M., Mendes, J. F., and Rangel, C. M. (1999). “Compound parabolic concentrator technology development to commercial solar detoxification applications.” Solar Energy, 67(4–6), 317–330.
Bond, G. C., Francisco, R. C., and Short, E. L. (2007). “Kinetics of hydrolysis of carbon tetrachloride by acidic solids.” Applied Catalysis A-General, 329, 46–57.
Bourikas, K., Hiemstra, T., and Van Riemsdijk, W. H. (2001). “Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile).” Langmuir, 17(3), 749–756.
Brus, L. E. (1984). “Electron electron and electron-hole interactions in small semiconductor crystallites.” J. Chem. Phys., 80(9), 4403–4409.
Brus, L. (1986). “Electronic wave-functions in semiconductor clusters - experiment and theory.” J. Phys. Chem., 90(12), 2555–2560.
Brusa, M. A., Di Iorio, Y., Churio, M. S., and Grela, M. A. (2007). “Photocatalytic air oxidation of cyclohexane in CH2Cl2-C6H12 mixtures over TiO2 particles - An attempt to rationalize the positive effect of dichloromethane on the yields of valuable oxygenates.” Journal of Molecular Catalysis A-Chemical, 268(1–2), 29–35.
Buzby, S., Barakat, M. A., Lin, H., Ni, C., Rykov, S. A., Chen, J. G., and Shah, S. I. (2006). “Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition.” Journal of Vacuum Science Technology B, 24(3), 1210–1214.
Camera-Roda, G., and Santarelli, F. (2007). “Optimization of the thickness of a photocatalytic film on the basis of the effectiveness factor.” Catalysis Today, 129(1–2), 161–168.
Canela, M. C., Alberici, R. M., and Jardim, W. F. (1998). “Gas-phase destruction of H2S using TiO2/UV-VIS.” J. Photochem. and Photobiol. A. Chem., 112(1), 73–80.
Carraway, E. R., Hoffman, A. J., and Hoffmann, M. R. (1994). “Photocatalytic oxidation of organic-acids on quantum-sized semiconductor colloids.” Environmental Science Technology, 28(5), 786–793.
Cernigoj, U., Stangar, U. L., and Trebse, P. (2007). “Evaluation of a novel carberry type photoreactor for the degradation of organic pollutants in water.” Journal of Photochemistry and Photobiology a-Chemistry, 188(2–3), 169–176.
Chan, A. H. C., Chan, C. K., Barford, J. P., and Porter, J. F. (2003). “Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater.” Water Research, 37(5), 1125–1135.
Chen, J., Ollis, D. F., Rulkens, W. H., and Bruning, H. (1999a). “Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): photocatalytic mechanisms.” Water Research, 33(3), 669–676.
Chen, J. N., Chan, Y. C., and Lu, M. C. (1999b). “Photocatalytic oxidation of chlorophenols in the presence of manganese ions.” Water Science and Technology, 39(10–11), 225–230.
Chen, C. C., Li, X. Z., Ma, W. H., Zhao, J. C., Hidaka, H., and Serpone, N. (2002). “Effect of transition metal ions on the TiO2 - assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism.” Journal of Physical Chemistry B, 106(2), 318–324.
Chen, S. F., and Liu, Y. Z. (2007). “Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst.” Chemosphere, 67(5), 1010–1017.
Chia, L. H., Tang, X. M., and Weavers, L. K. (2004). “Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution.” Environmental Science Technology, 38(24), 6875–6880.
Choi, W., Termin, A., and Hoffmann, M.R. (1994). “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.” J. Phys. Chem., 98, 13669–13679.
Choi, W. Y., and Hoffmann, M. R. (1997). “Novel photocatalytic mechanisms for CHCl3, CHBr3, and CCl3CO2 - degradation and the fate of photogenerated trihalomethyl radicals on TiO2.” Environmental Science Technology, 31(1), 89–95.
Choi, J. K., Son, H. S., Kim, T. S., Stenstrom, M. K., and Zoh, K. D. (2006). “Degradation kinetics and mechanism of RDX and HMX in TiO2 photocatalysis.” Environmental Technology, 27(2), 219–232.
Crisan, M., Braileanu, A., Raileanu, M., Zaharescu, M., Crisan, D., Dragan, N., Anastasescu, M., Ianculescu, A., Nitoi, I., Marinescu, V. E., and Hodorogea, S. M. (2008). “Sol-gel S-doped TiO2 materials for environmental protection.” Journal of Non-Crystalline Solids, 354(2–9), 705–711.
Crittenden, J. C., Liu, J. B., Hand, D. W., and Perram, D. L. (1997). “Photocatalytic oxidation of chlorinated hydrocarbons in water.” Water Research, 31(3), 429–438.
Daneshvar, N., Salari, D., and Khataee, A. R. (2003). “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters.” Journal of Photochemistry and Photobiology A-Chemistry, 157(1), 111–116.
Danion, A., Disdier, J., Guillard, C., Abdelmalek, F., and Jaffrezic-Renault, N. (2004). “Characterization and study of a single TiO2-coated optical fiber reactor.” Applied Catalysis B-Environmental, 52(3), 213–223.
Demeestere, K., Dewulf, J., and Van Langenhove, H. (2007). “Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art.” Critical Reviews in Environmental Science and Technology, 37(6), 489–538.
Di Paola, A., Cufalo, G., Addamo, M., Bellardita, M., Campostrini, R., Ischia, M., Ceccato, R., and Palmisano, L. (2008). “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1–3), 366–376.
Dijkstra, M. F. J., Buwalda, H., de Jong, A. W. F., Michorius, A., Winkelman, J. G. M., and Beenackers, A. A. C. M. (2001). “Experimental comparison of three reactor designs for photocatalytic water purification.” Chemical Engineering Science, 56(2), 547–555.
Dionysiou, D. D., Balasubramanian, G., Suidan, M. T., Khodadoust, A. P., Baudin, I., and Laine, M. (2000). “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water.” Water Research, 34(11), 2927–2940.
Doliveira, J. C., Alsayyed, G., and Pichat, P. (1990). “Photodegradation of 2-chlorophenol and 3-chlorophenol in TiO2 aqueous suspensions.” Environmental Science Technology, 24(7), 990–996.
Doliveira, J. C., Minero, C., Pelizzetti, E., and Pichat, P. (1993). “Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions - kinetic effects of the positions of the Cl atoms and identification of the intermediates.” Journal of Photochemistry and Photobiology A-Chemistry, 72(3), 261–267.
Dong, C. D. and Huang, C. P. (1995). “Photocatalytic degradation of 4-chlorophenol in TiO2 aqueous suspensions.” Advances in Chemistry Series, 244 Am. Chem. Soc. Washington, DC, Ch. 15, 291–313.
Doong, R. A., and Chang, W. H. (1998). “Photodegradation of parathion in aqueous titanium dioxide and zero valent iron solutions in the presence of hydrogen peroxide.” Journal of Photochemistry and Photobiology A-Chemistry, 116(3), 221–228.
Doong, R. A., Maithreepala, R. A., and Chang, S. M. (2000). “Heterogeneous and homogeneous photocatalytic degradation of chlorophenols in aqueous titanium dioxide and ferrous ion.” Water Science and Technology, 42(7–8), 253–260.
Doong, R. A., Chen, C. H., Maithreepala, R. A., and Chang, S. M. (2001). “The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions.” Water Research, 35(12), 2873–2880.
Efros, A. L., and Rosen, M. (1998). “Quantum size level structure of narrow-gap semiconductor nanocrystals: effect of band coupling.” Physical Review B, 58(11), 7120–7135.
Efros, A. L., and Rosen, M. (2000). “The electronic structure of semiconductor nanocrystals.” Annual Review of Materials Science, 30, 475–521.
Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., and Guieysse, B. (2007). “Sequential photochemical-biological degradation of chlorophenols.” Chemosphere, 66(11), 2201–2209.
Ferguson, M. A., Hoffmann, M. R., and Hering, J. G. (2005). “TiO2-photocatalyzed As(III) oxidation in aqueous suspensions: reaction kinetics and effects of adsorption.” Environmental Science Technology, 39(6), 1880–1886.
Fojtik, A., Weller, H., and Henglein, A. (1985). “Photochemistry of semiconductor colloids. Size quantization effects in Q-cadmium arsenide.” Chem. Phys. Lett., 120(6), 552–554.
Fox, M. A., and Dulay, M. T. (1993). “Heterogeneous photocatalysis.” chemical reviews, 93(1), 341–357.
Fujishima, A., and Honda, K. (1972). “Electrochemical photolysis of water at a semiconductor electrode.” Nature, 238(5358), 37–38.
Galindo, C., Jacques, P., and Kalt, A. (2001). “Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations.” Chemosphere, 45(6–7), 997–1005.
Gernjak, W., Fuerhacker, M., Fernandez-Ibanez, P., Blanco, J., and Malato, S. (2006). “Solar photo-Fenton treatment - Process parameters and process control.” Applied Catalysis B-Environmental, 64(1–2), 121–130.
Glaze, W. H., Kenneke, J. F., and Ferry, J. L. (1993). “Chlorinated by-products from the TiO2-mediated photodegradation of trichloroethylene and tetrachloroethylene in water.” Environmental Science Technology, 27(1), 177–184.
Gogate, P. R., and Pandit, A. B. (2004). “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions.” Advances in Environmental Research, 8(3–4), 501–551.
Gupta, H., and Tanaka, S. (1995). “Photocatalytic mineralization of perchloroethylene using titanium-dioxide.” Water Science and Technology, 31(9), 47–54.
Haase, M., Weller, H., and Henglein, A. (1988). “Photochemistry of colloidal semiconductors - photoelectron emission from CdS particles and related chemical effects.” J. Phys. Chem., 92(16), 4706–4712.
Hagfeldt, A., Lindstrom, H., Sodergren, S., and Lindquist, S. E. (1995). “Photoelectrochemical studies of colloidal TiO2 films - the effect of oxygen studied by photocurrent transients.” J. Electroanal.Chem., 381(1–2), 39–46.
Hamill, N. A., Weatherley, L. R., and Hardacre, C. (2001). “Use of a batch rotating photocatalytic contactor for the degradation of organic pollutants in wastewater.” Applied Catalysis B-Environmental, 30(1–2), 49–60.
Herrmann, J. M., Disdier, J., Pichat, P., Malato, S., and Blanco, J. (1998). “TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid (2,4-D) and of benzofuran.” Applied Catalysis B-Environmental, 17(1–2), 15–23.
Herrmann, J. M. (1999). “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.” Catalysis Today, 53(1), 115–129.
Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W. (1995). “Environmental applications of semiconductor photocatalysis.” Chemical Reviews, 95(1), 69–96.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J. M. (2001). “Photocatalytic degradation pathway of methylene blue in water.” Applied Catalysis B-Environmental, 31(2), 145–157.
Howe, R. F. (1998). “Recent developments in photocatalysis.” Dev. Chem. Eng. Miner. Proc., 6(1–2), 55–84.
Hsiao, C. Y., Lee, C. L., and Ollis, D. F. (1983). “Heterogeneous photocatalysis - degradation of dilute-solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon-tetrachloride (CCl4) with illuminated TiO2 photocatalyst.” Journal of Catalysis, 82(2), 418–423.
Huang, C. P., and Stumm, W. (1973). “Specific adsorption of cations on hydrous γAl2O3.” Journal of Colloid and Interface Science, 43(2), 409–420.
Ilisz, I., Dombi, A., Mogyorosi, K., Farkas, A., and Dekany, I. (2002). “Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis.” Applied Catalysis B-Environmental, 39(3), 247–256.
Imoberdorf, G. E., Cassano, A. E., Irazoqui, H. A., and Alfano, O. M. (2007). “Simulation of a multi-annular photocatalytic reactor for degradation of perchloroethylene in air: parametric analysis of radiative energy efficiencies.” Chemical Engineering Science, 62(4), 1138–1154.
Ireland, J. C., Klostermann, P., Rice, E. W., and Clark, R. M. (1993). “Inactivation of escherichia-coli by titanium-dioxide photocatalytic oxidation.” Applied and Environmental Microbiology, 59(5), 1668–1670.
Irie, H., Watanabe, Y., and Hashimoto, K. (2003). “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders.” Journal of Physical Chemistry B, 107(23), 5483–5486.
Jeon, J. H., Kim, S. D., Lim, T. H., and Lee, D. H. (2005). “Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.” Chemosphere, 60(8), 1162–1168.
Jung, J., Yoon, J. H., Chung, H. H., and Lee, M. J. (2002). “TCE and PCE decomposition by a combination of gamma-rays, ozone and titanium dioxide.” Journal of Radioanalytical and Nuclear Chemistry, 252(3), 451–454.
Kavan, L., Stoto, T., Gratzel, M., Fitzmaurice, D., and Shklover, V. (1993). “Quantum-size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3.” J. Phys. Chem., 97(37), 9493–9498.
Khaleel, A., and Al-Nayli, A. (2008). “Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene.” Applied Catalysis B-Environmental, 80(1–2), 176–184.
Kim, J. K., Choi, K., Cho, I. H., Son, H. S., and Zoh, K. D. (2007). “Application of a microbial toxicity assay for monitoring treatment effectiveness of pentachlorophenol in water using UV photolysis and TiO2 photocatalysis.” Journal of Hazardous Materials, 148(1–2), 281–286.
Kim, S., and Choi, W. (2005). “Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path.” Journal of Physical Chemistry B, 109(11), 5143–5149.
Koch, U., Fojtik, A., Weller, H., and Henglein, A. (1985). “Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects.” Chem. Phys. Lett., 122(5), 507–510.
Kometani, N., Inata, S., Shimokawa, A., and Yonezawa, Y. (2008). “Photocatalytic degradation of chlorobenzene by TiO2 in high-temperature and high-pressure water.” International Journal of Photoenergy, 2008, 1–6.
Konstantinou, I. K., Sakkas, V. A., and Albanis, T. A. (2002). “Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods.” Water Research, 36(11), 2733–2742.
Konstantinou, I. K., and Albanis, T. A. (2004). “ TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review.” Applied Catalysis B-Environmental, 49(1), 1–14.
Kormann, C., Bahnemann, D. W., and Hoffmann, M. R. (1988). “Preparation and characterization of quantum-size titanium-dioxide.” J. Phys. Chem., 92(18), 5196–5201.
Kormann, C., Bahnemann, D. W., and Hoffmann, M. R. (1991). “Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions.” Environmental Science Technology, 25(3), 494–500.
Kositzi, M., Poulios, I., Malato, S., Caceres, J., and Campos, A. (2004). “Solar photocatalytic treatment of synthetic municipal wastewater.” Water Research, 38(5), 1147–1154.
Krutzler, T., Fallmann, H., Maletzky, P., Bauer, R., Malato, S., and Blanco, J. (1999). “Solar driven degradation of 4-chlorophenol.” Catalysis Today, 54(2–3), 321–327.
Ku, Y., Leu, R. M., and Lee, K. C. (1996). “Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide.” Water Research, 30(11), 2569–2578.
Ku, Y., Chen, K. Y., and Lee, K. C. (1997). “Ultrasonic destruction of 2-chlorophenol in aqueous solution.” Water Research, 31(4), 929–935.
Ku, Y., Lee, Y. C., and Wang, W. Y. (2006). “Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage.” Journal of Hazardous Materials, 138(2), 350–356.
Kwon, S., Fan, M., Cooper, A. T., and Yang, H. Q. (2008). “Photocatalytic applications of micro- and nano-TiO2 in environmental engineering.” Critical Reviews in Environmental Science and Technology, 38(3), 197–226.
Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., and Maier, W. F. (2001). “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst.” Applied Catalysis B-Environmental, 32(4), 215–227.
Li, W., Ni, C., Lin, H., Huang, C. P., and Shah, S. I. (2004). “Size dependence of thermal stability of TiO2 nanoparticles.” Journal of Applied Physics, 96(11), 6663–6668.
Li, Y. J., Li, X. D., Li, J. W., and Yin, J. (2006). “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study.” Water Research, 40(6), 1119–1126.
Lichtin, N. N., and Avudaithai, M. (1996). “ TiO2 -photocatalyzed oxidative degradation of CH3CN, CH3OH, C2HCl3, and CH2Cl2 supplied as vapors and in aqueous solution under similar conditions.” Environmental Science Technology, 30(6), 2014–2020.
Lin, C., and Lin, K. S. (2007). “Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures.” Chemosphere, 66(10), 1872–1877.
Lin, C. F., Wu, C. H., and Onn, Z. N. (2008). “Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems.” Journal of Hazardous Materials, 154(1–3), 1033–1039.
Lin, H.-Y. (2008). Improving the optoelectronic property and photoactivity of nano-structured TiO2: effect of particle size, oxygen vacancy, and nitrogen doping. Ph.D. Dissertation, University of Delaware, Newark, DE, USA.
Lin, H., Huang, C. P., Li, W., Ni, C., Shah, S. I., and Tseng, Y. H. (2006). “Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol.” Applied Catalysis B-Environmental, 68(1–2), 1–11.
Lin, H. X., Wang, X. X., and Fu, X. Z. (2007). “Properties and distribution of the surface hydroxyl groups of TiO2.” Progress in Chemistry, 19(5), 665–670.
Ling, C. M., Mohamed, A. R., and Bhatia, S. (2004). “Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.” Chemosphere, 57(7), 547–554.
Linsebigler, A. L., Lu, G. Q., and Yates, J. T. (1995). “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results.” Chem. Rev., 95(3), 735–758.
Liu, T. C., and Cheng, T. I. (1995). “Effects of SiO2 on the catalytic properties of TiO2 for the incineration of chloroform.” Catalysis Today, 26(1), 71–77.
Lizama, C., Freer, J., Baeza, J., and Mansilla, H. D. (2002). “Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions.” Catalysis Today, 76(2–4), 235–246.
Lo, S. C., Lin, C. F., Wu, C. H., and Hsieh, P. H. (2004). “Capability of coupled CdSe/ TiO2 for photocatalytic degradation of 4-chlorophenol.” Journal of Hazardous Materials, 114(1–3), 183–190.
Lukac, J., Klementova, M., Bezdicka, P., Bakardjieva, S., Subrt, J., Szatmary, L., Bastl, Z., and Jirkovsky, J. (2007). “Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol.” Applied Catalysis B-Environmental, 74(1–2), 83–91.
Luo, Z. K., Song, L. X., Cai, H. H., Liu, J. H., Hong, W. L., and Huang, J. S. (2006). “Photo-catalytic de-chlorination of chlorinated methane by titanium oxide sol.” Journal of Inorganic Materials, 21(1), 145–150.
Malati, M. A. (1995). “The photocatalysed removal of pollutants from water.” Environmental Technology, 16(11), 1093–1099.
Malato, S., Blanco, J., Richter, C., Braun, B., and Maldonado, M. I. (1998). “Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species.” Applied Catalysis B-Environmental, 17(4), 347–356.
Malato, S., Blanco, J., Vidal, A., Fernandez, P., Caceres, J., Trincado, P., Oliveira, J. C., and Vincent, M. (2002a). “New large solar photocatalytic plant: set-up and preliminary results.” Chemosphere, 47(3), 235–240.
Malato, S., Blanco, J., Vidal, A., and Richter, C. (2002b). “Photocatalysis with solar energy at a pilot-plant scale: an overview.” Applied Catalysis B-Environmental, 37(1), 1–15.
Martin, S. T., Herrmann, H., Choi, W. Y., and Hoffmann, M. R. (1994a). “Time-resolved microwave conductivity .1. TiO2 photoreactivity and size quantization.” Journal of the Chemical Society-Faraday Transactions, 90(21), 3315–3322.
Martin, S. T., Herrmann, H., and Hoffmann, M. R. (1994b). “Time-resolved microwave conductivity .2. Quantum-sized TiO2 and the effect of adsorbates and light-intensity on charge-carrier dynamics.” Journal of the Chemical Society-Faraday Transactions, 90(21), 3323–3330.
Martin, S. T., Kesselman, J. M., Park, D. S., Lewis, N. S., and Hoffmann, M. R. (1996). “Surface structures of 4-chlorocatechol adsorbed on titanium dioxide.” Environmental Science Technology, 30(8), 2535–2542.
Matsunaga, T., Tomoda, R., Nakajima, T., and Wake, H. (1985). “Photoelectrochemical sterilization of microbial-cells by semiconductor powders.” Fems Microbiology Letters, 29(1–2), 211–214.
Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., and Komine, T. (1988). “Continuous-sterilization system that uses photosemiconductor powders.” Applied and Environmental Microbiology, 54(6), 1330–1333.
McLoughlin, O. A., Ibanez, P. F., Gernjak, W., Rodriguez, S. M., and Gill, L. W. (2004). “Photocatalytic disinfection of water using low cost compound parabolic collectors.” Solar Energy, 77(5), 625–633.
McMurray, T. A., Dunlop, P. S. M., and Byrne, J. A. (2006). “The photocatalytic degradation of atrazine on nanoparticulate TiO2 films.” Journal of Photochemistry and Photobiology A-Chemistry, 182(1), 43–51.
Mills, G., and Hoffmann, M. R. (1993). “Photocatalytic degradation of pentachlorophenol on TiO2 particles - identification of intermediates and mechanism of reaction.” Environmental Science Technology, 27(8), 1681–1689.
Mills, A., and LeHunte, S. (1997). “An overview of semiconductor photocatalysis.” Journal of Photochemistry and Photobiology A-Chemistry, 108(1), 1–35.
Mills, A., and Wang, J. S. (1998). “Photomineralisation of 4-chlorophenol sensitised by TiO2 thin films.” Journal of Photochemistry and Photobiology A-Chemistry, 118(1), 53–63.
Mo, S. D., and Ching, W. Y. (1995). “Electronic and optical-properties of 3 phases of titanium-dioxide - rutile, anatase, and brookite.” Phys. Rev. B., 51(19), 13023–13032.
Mogyorosi, K., Farkas, A., Dekany, I., Ilisz, I., and Dombi, A. (2002). “ TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay.” Environmental Science Technology, 36(16), 3618–3624.
Muggli, D. S., and Ding, L. F. (2001). “Photocatalytic performance of sulfated TiO2 and Degussa P-25TiO2 during oxidation of organics.” Applied Catalysis B-Environmental, 32(3), 181–194.
Muhammad, S. V., and Allen, P. D. (2000). “ TiO2 -assisted photocatalysis of lead-EDTA.” Water Research, 34(3), 952–964.
Nedeljkovic, J. M., Nenadovic, M. T., Micic, O. I., and Nozik, A. J. (1986). “Enhanced photoredox chemistry in quantized semiconductor colloids.” J. Phys. Chem., 90(1), 12–13.
Nevim, S., Arzu, H., Gulin, K., and Zekiye, C. (2002). “Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates.” J. Photochem. and Photobiol. A: Chem., 146(3), 189–197.
Noorjahan, M., Reddy, M. P., Kumari, V. D., Lavedrine, B., Boule, P., and Subrahmanyam, M. (2003). “Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions.” Journal of Photochemistry and Photobiology A-Chemistry, 156(1–3), 179–187.
NREL (National Renewable Energy Laboratory, Renewable Resource Data Center), http://rredc.nrel.gov/solar/spectra/am1.5/#about, accessed July 18, 2008.
Ochuma, I. J., Osibo, O. O., Fishwick, R. P., Pollington, S., Wagland, A., Wood, J., and Winterbottorn, J. M. (2007). “Three-phase photocatalysis using suspended titania and titania supported on a reticulated foam monolith for water purification.” Catalysis Today, 128(1–2), 100–107.
Ollis, D. F., Pelizzetti, E., and Serpone, N. (1991). “Photocatalyzed destruction of water contaminants.” Environmental Science Technology, 25(9), 1522–1529.
Oregan, B., and Gratzel, M. (1991). “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films.” Nature, 353(6346), 737–740.
Orlov, A., Watson, D. J., Williams, F. J., Tikhov, W. M., and Lambert, R. M. (2007). “Interactions of 4-chlorophenol with TiO2 polycrystalline surfaces: a study of environmental interfaces by NEXAFS, XPS, and UPS.” Langmuir, 23(19), 9551–9554.
Ou, H. H., Lo, S. L., and Wu, C. H. (2006). “Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol.” Journal of Hazardous Materials, 137(3), 1362–1370.
Pacheco, J. E., Prairie, M. R., and Yellowhorse, L. (1993). “Photocatalytic destruction of chlorinated solvents in water with solar-energy.” Journal of Solar Energy Engineering-Transactions of the Asme, 115(3), 123–129.
Paeker, A. R., and Grimmeiss, H. G. (1991). Basic Physics to Applications, Plenum Press, New York.
Pan, D. C., Zhao, N. N., Wang, Q., Jiang, S. C., Ji, X. L., and An, L. J. (2005). “Facile synthesis and characterization of luminescent TiO2 nanocrystals.” Advanced Materials, 17(16), 1991–1995.
Park, H. W., Lee, J. S., and Choi, W. Y. (2006). “Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity.” Catalysis Today, 111(3–4), 259–265.
Parra, S., Malato, S., and Pulgarin, C. (2002). “New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of isoproturon.” Applied Catalysis B-Environmental, 36(2), 131–144.
Pecchi, G., Reyes, P., Sanhueza, P., and Villasenor, J. (2001). “Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts.” Chemosphere, 43(2), 141–146.
Peill, N. J., and Hoffmann, M. R. (1996). “Chemical and physical characterization of a TiO2 -coated fiber optic cable reactor.” Environmental Science Technology, 30(9), 2806–2812.
Peral, J., Domenech, X., and Ollis, D. F. (1997). “Heterogeneous photocatalysis for purification, decontamination and deodorization of air.” Journal of Chemical Technology and Biotechnology, 70(2), 117–140.
Pirkanniemi, K., and Sillanpaa, M. (2002). “Heterogeneous water phase catalysis as an environmental application: a review.” Chemosphere, 48(10), 1047–1060.
Pozzo, R. L., Baltanas, M. A., and Cassano, A. E. (1997). “Supported titanium oxide as photocatalyst in water decontamination: State of the art.” Catalysis Today, 39(3), 219–231.
Pozzo, R. L., Giombi, J. L., Baltanas, M. A., and Cassano, A. E. (2000). “The performance in a fluidized bed reactor of photocatalysts immobilized onto inert supports.” Catalysis Today, 62(2–3), 175–187.
Qu, P., Zhao, J. C., Shen, T., and Hidaka, H. (1998). “ TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution.” Journal of Molecular Catalysis A-Chemical, 129(2–3), 257–268.
Ragaini, V., Selli, E., Bianchi, C. L., and Pirola, C. (2001). “Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques.” Ultrasonics Sonochemistry, 8(3), 251–258.
Rao, N. N., Dubey, A. K., Mohanty, S., Khare, P., Jain, R., and Kau, S. N. (2003). “Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability.” Journal of Hazardous Materials, 101(3), 301–314.
Ray, A. K., and Beenackers, A. A. C. M. (1997). “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis.” AIChE Journal, 43(10), 2571–2578.
Richard, C. (1993). “Regioselectivity of Oxidation by Positive Holes (h+) in Photocatalytic Aqueous Transformations.” Journal of Photochemistry and Photobiology A-Chemistry, 72(2), 179–182.
Rincon, A. G., and Pulgarin, C. (2007). “Fe3+ and TiO2 solar-light-assisted inactivation of E-coli at field scale - Implications in solar disinfection at low temperature of large quantities of water.” Catalysis Today, 122(1–2), 128–136.
Robert, D., and Malato, S. (2002). “Solar photocatalysis: a clean process for water detoxification.” Science of the Total Environment, 291(1–3), 85–97.
Rodriguez, S. M., Galvez, J. B., Rubio, M. I. M., Ibanez, P. F., Gernjak, W., and Alberola, I. O. (2005). “Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant.” Chemosphere, 58(4), 391–398.
Ryu, H., Gerrity, D., Crittenden, J. C., and Abbaszadegan, M. (2008). “Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation.” Water Research, 42(6–7), 1523–1530.
Ryu, J., and Choi, W. (2008). “Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application.” Environmental Science Technology, 42(1), 294–300.
Sato, T., Koizumi, Y., and Taya, M. (2003). “Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate.” Biochem. Eng. J., 14(2), 149–152.
Serpone, N., Lawless, D., Disdier, J., and Herrmann, J. M. (1994a). “Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids - naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations.” Langmuir, 10(3), 643–652.
Serpone, N., Terzian, R., Hidaka, H., and Pelizzetti, E. (1994b). “Ultrasonic induced dehalogenation and oxidation of 2-chlorophenol, 3-chlorophenol, and 4-chlorophenol in air-equilibrated aqueous-media - similarities with irradiated semiconductor particulates.” Journal of Physical Chemistry, 98(10), 2634–2640.
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., and Hidaka, H. (1995). “Exploiting the interparticle electron-transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol - chemical evidence for electron and hole transfer between coupled semiconductors.” Journal of Photochemistry and Photobiology A-Chemistry, 85(3), 247–255.
Shchukin, D., Ustinovich, E., Sviridov, D., and Pichat, P. (2004). “Effect of silver deposits on the photocatalytic activity of titanium dioxide for the removal of 2-chlorophenol in water.” Photochemical Photobiological Sciences, 3(1), 142–144.
Shemer, H., and Narkis, N. (2004). “Mechanisms and inorganic byproducts of trihalomethane compounds sonodegradation.” Environmental Science Technology, 38(18), 4856–4859.
Shi, L. Y., Li, C. Z., Fang, D. Y., Zhang, J. P., Zhu, Y. H., and Chen, A. P. (1999). “Ultrafine titania photocatalytic materials synthesized by high temperature reaction in TiCl4-O2 system.” Journal of Inorganic Materials, 14(5), 717–725.
Singh, H. K., Saquib, M., Haque, M. M., and Muneer, M. (2007). “Heterogeneous photocatalysed degradation of 4-chlorophenoxyacetic acid in aqueous suspensions.” Journal of Hazardous Materials, 142(1–2), 374–380.
So, C. M., Cheng, M. Y., Yu, J. C., and Wong, P. K. (2002). “Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation.” Chemosphere, 46(6), 905–912.
Son, H. S., Lee, S. J., Cho, I. H., and Zoh, K. D. (2004). “Kinetics and mechanism of TNT degradation in TiO2 photocatalysis.” Chemosphere, 57(4), 309–317.
Stafford, U., Gray, K. A., and Kamat, P. V. (1994). “Radiolytic and TiO2-assisted photocatalytic degradation of 4-chlorophenol - a comparative study.” Journal of Physical Chemistry, 98(25), 6343–6351.
Stafford, U., Gray, K. A., and Kamat, P. V. (1997). “Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength.” Journal of Catalysis, 167(1), 25–32.
Stylidi, M., Kondarides, D. I., and Verykios, X. E. (2003). “Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions.” Applied Catalysis B-Environmental, 40(4), 271–286.
Szewczyk, D. A. (1997). “The degradation of 2-chlorophenol by sonolysis and photocatalysis on TiO2 in an aqueous solution.” Abstracts of Papers of the American Chemical Society, 213, 611-CHED.
Tang, W. Z., and Huang, C. P. (1995). “Photocatalyzed oxidation pathways of 2,4-dichlorophenol by Cds in basic and acidic aqueous-solutions.” Water Research, 29(2), 745–756.
Tang, X. H., Zhang, Y., Yin, G. F., Zhou, D. L., Liu, H., and Zheng, C. Q. (2004). “Study on relationship of particle structure and photocatalytic properties of Nano-TiO2 powder.” Rare Metal Mat. and Eng., 33(8), 864–868.
Tao, T., Yang, J. J., and Maciel, G. E. (1999). “Photoinduced decomposition of trichloroethylene on soil components.” Environmental Science Technology, 33(1), 74–80.
Teekateerawej, S., Nishino, J., and Nosaka, Y. (2006). “Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics.” Journal of Photochemistry and Photobiology A-Chemistry, 179(3), 263–268.
Torimoto, T., Okawa, Y., Takeda, N., and Yoneyama, H. (1997). “Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane.” Journal of Photochemistry and Photobiology A-Chemistry, 103(1–2), 153–157.
Trudinger, U., Muller, G., and Unger, K. K. (1990). “Porous zirconia and titania as packing materials for high-performance liquid-chromatography.” Journal of Chromatography, 535(1–2), 111–125.
Tseng, J., and Huang, C. P. (1990). “Mechanistic Aspects of Photocatalytic Oxidation of Phenol in Aqueous Solution.” Emerging Technologies in Hazardous Waste Management, Tedder D.W. and Pohland F. G., ed.
Tseng, J. M., and Huang, C. P. (1991). “Removal of chlorophenols from water by photocatalytic oxidation.” Water Science and Technology, 23(1–3), 377–387.
Turchi, C. S., and Ollis, D. F. (1990). “Photocatalytic degradation of organic-water contaminants - mechanisms involving hydroxyl radical attack.” Journal of Catalysis, 122(1), 178–192.
Uchihara, T., Matsumura, M., Ono, J., and Tsubomura, H. (1990). “Effect of ethylenediaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium-sulfide and cadmium selenide.” Journal of Physical Chemistry, 94(1), 415–418.
Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K. (2002). “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations.” Journal of Physics and Chemistry of Solids, 63(10), 1909–1920.
Valente, J. P. S., Padilha, P. M., and Florentino, A. O. (2006). “Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2.” Chemosphere, 64(7), 1128–1133.
Van Gerven, T., Mul, G., Moulijn, J., and Stankiewicz, A. (2007). “A review of intensification of photocatalytic processes.” Chemical Engineering and Processing, 46(9), 781–789.
Vinodgopal, K., Wynkoop, D. E., and Kamat, P. V. (1996). “Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light.” Environmental Science Technology, 30(5), 1660–1666.
Wilcoxon, J. P. (2000). “Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters.” Journal of Physical Chemistry B, 104(31), 7334–7343.
Wyness, P., Klausner, J. F., Goswami, D. Y., and Schanze, K. S. (1994). “Performance of nonconcentrating solar photocatalytic oxidation reactors .1. flat-plate configuration.” Journal of Solar Energy Engineering-Transactions of the Asme, 116(1), 2–7.
Xie, Y. B., Shen, X. W., and Yuan, C. W. (2003). “A novel multi-tube photoreactor with UV light and immobilized TiO2 thin film for water treatment.” Chinese Journal of Chemical Engineering, 11(1), 27–32.
Xu, T. L., Cai, Y., and O’Shea, K. E. (2007). “Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions.” Environmental Science Technology, 41(15), 5471–5477.
Yamaki, T., Sumita, T., Yamamoto, S., and Miyashita, A. (2002). “Preparation of epitaxial TiO2 films by PLD for photocatalyst applications.” Journal of Crystal Growth, 237, 574–579.
Yang, J. K., and Davis, A. P. (2001). “Competitive photocatalytic oxidation of Cu(II)-EDTA and Cd(II)-EDTA with illuminated TiO2.” Environmental Science Technology, 35(17), 3566–3570.
Yang, L. P., Liu, Z. Y., Shi, H. W., Hu, H., and Shangguan, W. F. (2007). “Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde.” Catalysis Today, 126(3–4), 359–368.
Yatmaz, H. C., Wallis, C., and Howarth, C. R. (2001). “The spinning disc reactor - studies on a novel TiO2 photocatalytic reactor.” Chemosphere, 42(4), 397–403.
Yawalkar, A. A., Bhatkhande, D. S., Pangarkar, V. G., and Beenackers, A. (2001). “Solar-assisted photochemical and photocatalytic degradation of phenol.” Journal of Chemical Technology and Biotechnology, 76(4), 363–370.
Yu, J. L., and Savage, P. E. (2000). “Kinetics of catalytic supercritical water oxidation of phenol over TiO2.” Environmental Science Technology, 34(15), 3191–3198.
Yu, K. P., and Lee, G. W. M. (2007). “Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3).” Applied Catalysis B-Environmental, 75(1–2), 29–38.
Yue, B., Jiang, L., Hu, C. W., Chen, J. M., and He, H. Y. (2005). “Heterogeneous photocatalytic mineralization of chlorobenzene by paratungstate-loaded titania catalysts in an aqueous medium.” Chemical Research in Chinese Universities, 21(4), 386–390.
Yue, B., Zhou, Y., Xu, J. Y., Wu, Z. Z., Zhang, X. A., Zou, Y. F., and Jin, S. L. (2002). “Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates.” Environmental Science Technology, 36(6), 1325–1329.
Zainal, Z., Lee, C. Y., Hussein, M. Z., Kassim, A., and Yusof, N. A. (2007). “Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films.” Journal of Hazardous Materials, 146(1–2), 73–80.
Zhang, J. Z. (2000). “Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles.” Journal of Physical Chemistry B, 104(31), 7239–7253.
Zhang, Y., Crittenden, J. C., Hand, D. W., and Perram, D. L. (1994). “Fixed-bed photocatalysts for solar decontamination of water.” environmental science technology, 28(3), 435–442.
Zhang, Y., Crittenden, J. C., Hand, D. W., and Perram, D. L. (1996). “Destruction of organic compounds in water using supported photocatalysts.” Journal of Solar Energy Engineering-Transactions of the Asme, 118(2), 123–129.
Zhang, Z. B., Wang, C. C., Zakaria, R., and Ying, J. Y. (1998). “Role of particle size in nanocrystalline TiO2-based photocatalysts.” Journal of Physical Chemistry B, 102(52), 10871–10878.
Zhang, Z. S., Anderson, W. A., and Moo-Young, M. (2004). “Experimental analysis of a corrugated plate photocatalytic reactor.” Chemical Engineering Journal, 99(2), 145–152.

Information & Authors

Information

Published In

Go to Nanotechnologies for Water Environment Applications
Nanotechnologies for Water Environment Applications
Pages: 43 - 92

History

Published online: May 9, 2013

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$166.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$166.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share