Chapter
Apr 26, 2012

Kalman Filter-Based Identification of Bridge Fragility Parameters

Publication: Structures Congress 2011

Abstract

The study describes a procedure to identify bridge fragility parameters utilizing its vibration response recorded during experimental study. For this purpose, bridge damage data observed in a near full-scale shake table experiment is utilized. The bridge was tested under a sequence of earthquake ground motions with increasing intensities. Low and high amplitude tests were performed in series to observe the seismic performance of the bridge starting from yielding to complete failure. In the present study, recorded bridge acceleration during high amplitude tests is utilized and further analyzed to evaluate the degraded performance of the bridge after each high amplitude test. This is done by using extended Kalman filtering (EKF) technique as a tool. The degraded performance of the bridge after each run is measured in terms of degraded stiffness of the bridge at pier ends. In parallel, finite element (FE) model of the same bridge is developed in order to perform time history analysis under a set of earthquake ground motions with various hazard levels. Before applying the ground motions, the FE model is updated with the degraded stiffness of the bridge obtained from EKF after each high amplitude test. This is important to numerically simulate the gradual progression of bridge damage when subjected to earthquake ground motions in sequence. After each time history analysis, bridge response is obtained in terms of the rotation at bridge pier ends. Thus obtained response from time history analyses is used for fragility curve development. The change in fragility parameters represents the progressive damage of the bridge when subjected to ground motions with incremental intensity.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Structures Congress 2011
Structures Congress 2011
Pages: 2240 - 2250

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Swagata Banerjee [email protected]
Assistant Professor, Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802.E-mail: [email protected]
Graduate student, Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802.E-mail: [email protected]
Masanobu Shinozuka [email protected]
Distinguished Professor, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share