Chapter
Apr 26, 2012

Use of Fractional Order Viscoelastic Models to Characterize Asphalt Concrete

Publication: Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow

Abstract

The paper presents the application of fractional viscoelastic models to characterize viscoleastic properties of asphalt concrete. This implies the replacement of integer order derivatives in the constitutive equations with fractional derivatives. Integer order stress and strain derivatives lead to exponential relaxation and typically a large number of Maxwell or Kelvin elements are needed to characterize the full viscoelastic response range. In each case, the representation is not unique and the parameters cannot be linked to the composition of asphalt concrete. Fractional models lead to non-exponential relaxation making it possible to characterize the full viscoelastic response range with a small number of elements (typically 1 or 2). As such, the representation is unique and can be linked to the composition of asphalt concrete. Fractional models can also be used to construct the dynamic modulus master curve. As Witczak's sigmoidal model is a simple curve fitting it has no real physical meaning. Fractional models on the other hand have physical meaning, uniquely define the creep compliance and relaxation modulus, and allow better analysis of the physics of the relaxation process by considering the storage modulus, the loss modulus, and the phase angle. Using fractional models to analyze experimental asphalt concrete dynamic modulus results suggested two distinct relaxation processes; one at low temperatures and another at high temperatures. A possible explanation for this behavior can be attributed to the composition of asphalt concrete; at low temperatures, the binder behaves as a viscoelastic solid with aggregate particles more or less securely tied to the binder. The relaxation process is therefore restricted to the binder. At high temperatures, the binder behaves more as a viscoelastic fluid allowing aggregate particles to slide past each other which introduces another aspect of the relaxation process.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to T&DI Congress 2011
Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow
Pages: 677 - 687

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Samer W. Katicha, Ph.D.
No affiliation information available.
Gerardo W. Flintsch, Ph.D.
P.E.
No affiliation information available.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share