Chapter
Apr 26, 2012

Selecting Stormwater (Bio)Filtration Sites and Soil-Based Media

Publication: Watershed Management 2010: Innovations in Watershed Management under Land Use and Climate Change

Abstract

Many research studies have been published regarding the treatment efficiency of bioretention for a wide variety of pollutants found in urban stormwater runoff. However, limited information is available on predicting the treatability of these pollutants between media and between sites. Predicting the treatment ability of bioretention/infiltration/filtration media is a function of both media and water chemistry. This paper begins that meta-analysis of pollutant removal as a function of chemistry. The results presented here are from a single project evaluating candidate bioretention media to meet NPDES numeric effluent limits for industrial stormwater discharges and are based on a limited number of samples. As additional data become available in the spring, the analysis will be expanded. The water chemistry greatly affects the forms of the pollutants, and many metals that are in the dissolved phase have been shown not to be ionic. These complexed metals have valence charges that may make their treatment more difficult. The preliminary results for soil chemistry effects indicate that the media that appear to have the best removal ability for a wide range of metallic pollutants are those that have both cation exchange ability and comparatively high organic matter content; however these chemical characteristics cannot be used to measure media exhaustion, except for the pure ion exchange resins and possibly for ionic forms of the cations. For the removal of the dissolved fraction of metals, this also may require a neutral to acidic media pH because of the generally increased solubility of metals at lower pHs. Lower pHs and higher organic matter contents, however, must be evaluated further if phosphorus removal is also desired since phosphorus is removed better at higher pHs and lower organic matter content (organic matter is a source of P). These results also highlight the trade-offs in pollutant capture versus cation/mineral/pollutant export when using ion-exchange media. Design of bioretention devices for effective treatment, and especially to meet permit limits, requires a greater understanding of the interaction of water and soil chemistry on a site, with a focus on the chemistry of the dissolved fraction.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Watershed Management 2010
Watershed Management 2010: Innovations in Watershed Management under Land Use and Climate Change
Pages: 774 - 785

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Shirley E. Clark, Ph.D. [email protected]
P.E., D.WRE
Associate Professor of Environmental Engineering, Penn State Harrisburg, 777 W. Harrisburg Pike TL-105, Middletown, PA 17057.E-mail: [email protected]
Robert Pitt, Ph.D. [email protected]
P.E., D.WRE
Cudworth Professor of Urban Water Systems, Department of Civil, Construction and Environmental Engineering, The University of Alabama, Box 870205, Tuscaloosa, AL 35487-0205.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share