Chapter
Apr 26, 2012

Evaluating Effectiveness of Best Management Practices to Control Accelerated Sedimentation of the Morro Bay Estuary

Publication: Watershed Management 2010: Innovations in Watershed Management under Land Use and Climate Change

Abstract

The Morro Bay estuary, located on the central Coast of California approximately half way between Los Angeles and San Francisco, is one of the most important wetlands on the west Coast as it supports wide variety of habitats including numerous sensitive and endangered plant and animal species. Various studies have identified accelerated erosion and subsequent sedimentation as a major threat for sustainability of the bay. Watershed disturbances caused by agricultural activities are believed to be one of the major causes of the accelerated erosion and sedimentation. More than 200 conservation practices have been installed in the watershed since the mid-1990 to reduce erosion and sedimentation. This paper will review the implemented BMPs and will evaluate effectiveness of the BMPs using observations and modeling exercise. Streamflow and sediment concentration, measured mainly during the rainy seasons, are available for multiple locations in the watershed. However, the observations are not sufficient in terms of spatial density and data length to evaluate effectiveness of the mitigation measures at various locations in the watershed. It would be daunting in terms of cost to develop an intensive network of monitoring sites that would be needed for reliable management of NPS pollutants. As a result, comprehensive watershed simulation models that integrate watershed and climate characteristics and can estimate pollutant quantity at various locations, and that can also identify source of the contaminants, is emerging as a key component of watershed management. In this regard, a comprehensive watershed simulation model for the Morro Bay watershed has been developed using Soil and Water Assessment Tool (SWAT) to simulate both streamflow and sediment concentration. The observed data was used to improve prediction accuracy of the SWAT model through parameter sensitivity analysis and calibration steps. Parameter sensitivity analysis was performed using step-wise-regression analysis and Morris's one-at-a time (OAT) method. Calibration was performed using four different optimization methods: PEST, Genetic Algorithms, the Shuffled Complex Evolution Algorithm, and Dynamically Dimensioned Search. Relative performance of the sensitivity analysis methods and the calibration algorithms will be discussed in terms of effectiveness and computational efficiency. The developed model was used to evaluate effectiveness of the BMPs implemented in the Morro Bay watershed, and can also be used to prioritize sites where BMPs may be implemented in the future to further improve ecological integrity of the estuary.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Watershed Management 2010
Watershed Management 2010: Innovations in Watershed Management under Land Use and Climate Change
Pages: 1190 - 1201

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Misgana Muleta, Ph.D. [email protected]
P.E.
Assistant Professor, Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA 93407. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share