Chapter
Apr 26, 2012

Regenerative Stormwater Conveyance: An Innovative Approach to Meet a Range of Stormwater Management and Ecological Goals

Publication: World Environmental and Water Resources Congress 2010: Challenges of Change

Abstract

Drainage infrastructure, whether it be simply conveyance based or intended for other stormwater management criteria (e.g., detention, channel protection), typically results in the concentration of flows at discrete outfall points. Standard energy dissipation (e.g., flared end sections with rip rap or engineered stilling basins) together with overcontrol of discharge, frequently prove to be inadequate to protect against outfall erosion and related receiving stream degradation. The result seen throughout urbanizing watersheds is impaired habitat, excessive erosion and transport of sediment and nutrients to downstream sinks (e.g., ponds, lakes, estuaries, etc.), and compromised infrastructure. Based on an inventory of stormwater outfalls, Anne Arundel County, Maryland has concluded that the majority of pipe outfalls, rip-rap and gabion level spreaders and energy dissipation devices used to convey stormwater have failed and resulted in more than $600 million in damage to streams, adjacent wetlands, and steep slopes. A more thoughtful, cost-effective, and restorative approach to handling urban stormwater flows was clearly needed, and leaders in the County Department of Public Works decided to pursue design solutions that provide a full range of benefits including improved water quality, stable conveyance, increased groundwater recharge, floodplain reconnection, and wetland creation. The new preferred approach is often referred to as regenerative stormwater conveyance (RSC). Regenerative stormwater conveyance (RSC) systems are open-channel, sand seepage filtering systems that utilize a series of shallow aquatic pools, riffle weir grade controls, native vegetation, and underlying carbon-rich sand channel to treat and safely detain and convey storm flow, and convert stormwater to groundwater through infiltration. RSC systems combine features and treatment benefits of swales, infiltration, filtering, and wetland practices. RSC is applicable in new development, retrofit, and restoration scenarios and is fully consistent with and even expands upon the principles of low impact development, environmental site design and sustainable green infrastructure.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2010
World Environmental and Water Resources Congress 2010: Challenges of Change
Pages: 3399 - 3413

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211. E-mail: [email protected]
Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211. E-mail: [email protected]
Keith Underwood [email protected]
Underwood & Associates, 1753 Ebling Trail, Annapolis, MD 21401. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share